Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis

方位(导航) 断层(地质) 计算机科学 鉴定(生物学) 试验数据 人工智能 工程类 算法 控制理论(社会学) 植物 控制(管理) 地震学 生物 程序设计语言 地质学
作者
Leiming Ma,Bin Jiang,Lingfei Xiao,Ningyun Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:200: 110490-110490 被引量:42
标识
DOI:10.1016/j.ymssp.2023.110490
摘要

Fault diagnosis of bearing under variable working conditions is widely required in practice, and the combination of working conditions and fault fluctuations increases the complexity of addressing its related problems. By developing a virtual simulation model, a digital twin (DT) can obtain the same or even more information than the physical object at a lower cost. Furthermore, it has great potential in the application of bearing fault diagnosis. In this paper, the DT model of the bearing test rig is robustly established, and the fault diagnosis bearing between the simulation and physical object is realized using the proposed enhanced meta-transfer learning (EMTL). First, the DT model is established through parameter identification and modal testing, and the modeling accuracy of DT model reaching 95.685%. The bearing simulation and experimental data are then collected under the same conditions using the DT model and bearing test rig, and the simulation data with little deviation from the experimental data is obtained. Finally, an attention mechanism and domain adaptation are introduced into the EMTL, with the average accuracy of fault diagnosis of bearing reaching 95.18% with few-label target domain data. The proposed strategy is both theoretically significant and practically useful. The experiment results demonstrate that our method outperforms a series of state-of-the-art methods on the bearing fault diagnosis across various limited data conditions. The proposed strategy effectively solves the few-shot problem, which is both theoretically significant and practically useful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏梦园完成签到,获得积分20
刚刚
阳光彩虹小白马完成签到 ,获得积分10
刚刚
cassie发布了新的文献求助10
1秒前
Lucas应助mf采纳,获得10
2秒前
MD99发布了新的文献求助10
4秒前
wangyuchen发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
杨馨蕊完成签到 ,获得积分10
9秒前
sb完成签到,获得积分10
9秒前
10秒前
王sir完成签到,获得积分10
10秒前
Khaos_0929发布了新的文献求助10
12秒前
陈平安完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
nanyuan123发布了新的文献求助30
16秒前
半糖完成签到,获得积分10
16秒前
SYLH应助ShihanZhong采纳,获得10
16秒前
111完成签到,获得积分10
17秒前
19秒前
lrl发布了新的文献求助10
19秒前
夏梦园发布了新的文献求助10
19秒前
了0完成签到 ,获得积分10
21秒前
锥子完成签到,获得积分10
22秒前
脑洞疼应助清新的苑博采纳,获得10
22秒前
Khaos_0929完成签到,获得积分10
23秒前
23秒前
端庄千青完成签到,获得积分10
24秒前
24秒前
mf发布了新的文献求助10
24秒前
25秒前
26秒前
凉的白开完成签到,获得积分10
26秒前
joey2024完成签到,获得积分20
26秒前
可耐的寒松完成签到,获得积分10
28秒前
花痴的易真完成签到,获得积分10
28秒前
zwy完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496397
关于积分的说明 11081817
捐赠科研通 3226886
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800997