Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis

方位(导航) 断层(地质) 计算机科学 鉴定(生物学) 试验数据 人工智能 工程类 算法 控制理论(社会学) 植物 控制(管理) 地震学 生物 程序设计语言 地质学
作者
Leiming Ma,Bin Jiang,Lingfei Xiao,Ningyun Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110490-110490 被引量:80
标识
DOI:10.1016/j.ymssp.2023.110490
摘要

Fault diagnosis of bearing under variable working conditions is widely required in practice, and the combination of working conditions and fault fluctuations increases the complexity of addressing its related problems. By developing a virtual simulation model, a digital twin (DT) can obtain the same or even more information than the physical object at a lower cost. Furthermore, it has great potential in the application of bearing fault diagnosis. In this paper, the DT model of the bearing test rig is robustly established, and the fault diagnosis bearing between the simulation and physical object is realized using the proposed enhanced meta-transfer learning (EMTL). First, the DT model is established through parameter identification and modal testing, and the modeling accuracy of DT model reaching 95.685%. The bearing simulation and experimental data are then collected under the same conditions using the DT model and bearing test rig, and the simulation data with little deviation from the experimental data is obtained. Finally, an attention mechanism and domain adaptation are introduced into the EMTL, with the average accuracy of fault diagnosis of bearing reaching 95.18% with few-label target domain data. The proposed strategy is both theoretically significant and practically useful. The experiment results demonstrate that our method outperforms a series of state-of-the-art methods on the bearing fault diagnosis across various limited data conditions. The proposed strategy effectively solves the few-shot problem, which is both theoretically significant and practically useful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Genius发布了新的文献求助10
刚刚
李老头发布了新的文献求助10
刚刚
1秒前
情怀应助邻街采纳,获得10
2秒前
2秒前
gl7183完成签到,获得积分10
2秒前
2秒前
3秒前
自由的聋五完成签到,获得积分10
3秒前
jackmilton完成签到,获得积分10
3秒前
深渊与海发布了新的文献求助10
3秒前
xuyw应助岩中花述采纳,获得10
3秒前
4秒前
西瓜发布了新的文献求助10
5秒前
科研通AI6应助风中泰坦采纳,获得10
5秒前
852应助晴朗采纳,获得10
6秒前
Aurora发布了新的文献求助10
6秒前
6秒前
壹吾鱼完成签到,获得积分10
6秒前
7秒前
152van发布了新的文献求助10
7秒前
小衫生完成签到,获得积分20
7秒前
ZhangHaoYuan完成签到,获得积分10
8秒前
隐形曼青应助yu采纳,获得10
9秒前
9秒前
10秒前
11秒前
科研通AI6应助xmingpsy采纳,获得10
11秒前
11秒前
11秒前
华仔应助李楼村采纳,获得10
12秒前
科研通AI6应助xiaofeifantasy采纳,获得10
12秒前
13秒前
13秒前
tongguang发布了新的文献求助10
13秒前
咖啡豆发布了新的文献求助200
14秒前
我是老大应助faye采纳,获得10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906