Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis

方位(导航) 断层(地质) 计算机科学 鉴定(生物学) 试验数据 人工智能 工程类 算法 控制理论(社会学) 植物 控制(管理) 地震学 生物 程序设计语言 地质学
作者
Leiming Ma,Bin Jiang,Lingfei Xiao,Ningyun Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110490-110490 被引量:80
标识
DOI:10.1016/j.ymssp.2023.110490
摘要

Fault diagnosis of bearing under variable working conditions is widely required in practice, and the combination of working conditions and fault fluctuations increases the complexity of addressing its related problems. By developing a virtual simulation model, a digital twin (DT) can obtain the same or even more information than the physical object at a lower cost. Furthermore, it has great potential in the application of bearing fault diagnosis. In this paper, the DT model of the bearing test rig is robustly established, and the fault diagnosis bearing between the simulation and physical object is realized using the proposed enhanced meta-transfer learning (EMTL). First, the DT model is established through parameter identification and modal testing, and the modeling accuracy of DT model reaching 95.685%. The bearing simulation and experimental data are then collected under the same conditions using the DT model and bearing test rig, and the simulation data with little deviation from the experimental data is obtained. Finally, an attention mechanism and domain adaptation are introduced into the EMTL, with the average accuracy of fault diagnosis of bearing reaching 95.18% with few-label target domain data. The proposed strategy is both theoretically significant and practically useful. The experiment results demonstrate that our method outperforms a series of state-of-the-art methods on the bearing fault diagnosis across various limited data conditions. The proposed strategy effectively solves the few-shot problem, which is both theoretically significant and practically useful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ACY完成签到,获得积分10
刚刚
1秒前
anders完成签到 ,获得积分10
1秒前
丁莞完成签到,获得积分10
1秒前
文艺的夏波完成签到,获得积分20
1秒前
kiwi发布了新的文献求助30
1秒前
杨洋完成签到,获得积分10
2秒前
哈哈哈发布了新的文献求助10
2秒前
止咳宝发布了新的文献求助10
2秒前
南宫应助小研采纳,获得10
2秒前
共享精神应助哒哒采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
2秒前
3秒前
黑猫乾杯应助李小鑫吖采纳,获得10
3秒前
3秒前
科研通AI6应助Huang采纳,获得10
4秒前
默默完成签到,获得积分10
4秒前
4秒前
布鲁鲁完成签到,获得积分10
5秒前
草东树完成签到,获得积分10
5秒前
精明人达完成签到,获得积分10
5秒前
Laurie发布了新的文献求助10
5秒前
赘婿应助九局下半采纳,获得10
5秒前
果果给果果的求助进行了留言
5秒前
科研通AI6应助无铭亚空采纳,获得10
5秒前
ccwu发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
5秒前
6秒前
乐乐应助1234采纳,获得10
6秒前
mmz完成签到 ,获得积分10
6秒前
徐老师发布了新的文献求助10
7秒前
美丽完成签到 ,获得积分10
7秒前
CodeCraft应助文艺的夏波采纳,获得10
8秒前
8秒前
8秒前
酷波er应助Deb采纳,获得10
8秒前
8秒前
wenbin完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271