Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis

方位(导航) 断层(地质) 计算机科学 鉴定(生物学) 试验数据 人工智能 工程类 算法 控制理论(社会学) 植物 控制(管理) 地震学 生物 程序设计语言 地质学
作者
Leiming Ma,Bin Jiang,Lingfei Xiao,Ningyun Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110490-110490 被引量:80
标识
DOI:10.1016/j.ymssp.2023.110490
摘要

Fault diagnosis of bearing under variable working conditions is widely required in practice, and the combination of working conditions and fault fluctuations increases the complexity of addressing its related problems. By developing a virtual simulation model, a digital twin (DT) can obtain the same or even more information than the physical object at a lower cost. Furthermore, it has great potential in the application of bearing fault diagnosis. In this paper, the DT model of the bearing test rig is robustly established, and the fault diagnosis bearing between the simulation and physical object is realized using the proposed enhanced meta-transfer learning (EMTL). First, the DT model is established through parameter identification and modal testing, and the modeling accuracy of DT model reaching 95.685%. The bearing simulation and experimental data are then collected under the same conditions using the DT model and bearing test rig, and the simulation data with little deviation from the experimental data is obtained. Finally, an attention mechanism and domain adaptation are introduced into the EMTL, with the average accuracy of fault diagnosis of bearing reaching 95.18% with few-label target domain data. The proposed strategy is both theoretically significant and practically useful. The experiment results demonstrate that our method outperforms a series of state-of-the-art methods on the bearing fault diagnosis across various limited data conditions. The proposed strategy effectively solves the few-shot problem, which is both theoretically significant and practically useful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喔喔佳佳发布了新的文献求助10
1秒前
future发布了新的文献求助10
1秒前
领导范儿应助诚心的源智采纳,获得10
1秒前
yuyijk发布了新的文献求助10
2秒前
隐形曼青应助幸福芝麻采纳,获得10
2秒前
快乐花生发布了新的文献求助10
2秒前
果冻橙发布了新的文献求助20
2秒前
追忆淮发布了新的文献求助10
3秒前
我是老大应助彩云追月采纳,获得10
3秒前
费隐发布了新的文献求助10
3秒前
4秒前
密斯特蟹完成签到,获得积分10
4秒前
4秒前
5秒前
小瞬完成签到,获得积分10
6秒前
慕子完成签到 ,获得积分10
6秒前
7秒前
崔崔崔完成签到,获得积分10
7秒前
小爱完成签到 ,获得积分10
9秒前
9秒前
SOBER完成签到,获得积分10
9秒前
汪宇发布了新的文献求助10
10秒前
虚荣的泥猴桃完成签到 ,获得积分10
10秒前
马dong发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助30
10秒前
崔崔崔发布了新的文献求助10
11秒前
龚仕杰完成签到 ,获得积分10
11秒前
12秒前
13秒前
的方法完成签到,获得积分10
13秒前
诚心的源智完成签到,获得积分10
13秒前
喔喔佳佳完成签到 ,获得积分10
14秒前
Ehrmantraut完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
思源应助小学生采纳,获得10
15秒前
脑洞疼应助慈祥的雅寒采纳,获得20
16秒前
深情安青应助liffchao采纳,获得10
16秒前
qq发布了新的文献求助10
17秒前
17秒前
分析法FXF应助lonf采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717887
求助须知:如何正确求助?哪些是违规求助? 5248869
关于积分的说明 15283627
捐赠科研通 4867961
什么是DOI,文献DOI怎么找? 2613978
邀请新用户注册赠送积分活动 1563880
关于科研通互助平台的介绍 1521369