Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis

方位(导航) 断层(地质) 计算机科学 鉴定(生物学) 试验数据 人工智能 工程类 算法 控制理论(社会学) 植物 控制(管理) 地震学 生物 程序设计语言 地质学
作者
Leiming Ma,Bin Jiang,Lingfei Xiao,Ningyun Lu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:200: 110490-110490 被引量:80
标识
DOI:10.1016/j.ymssp.2023.110490
摘要

Fault diagnosis of bearing under variable working conditions is widely required in practice, and the combination of working conditions and fault fluctuations increases the complexity of addressing its related problems. By developing a virtual simulation model, a digital twin (DT) can obtain the same or even more information than the physical object at a lower cost. Furthermore, it has great potential in the application of bearing fault diagnosis. In this paper, the DT model of the bearing test rig is robustly established, and the fault diagnosis bearing between the simulation and physical object is realized using the proposed enhanced meta-transfer learning (EMTL). First, the DT model is established through parameter identification and modal testing, and the modeling accuracy of DT model reaching 95.685%. The bearing simulation and experimental data are then collected under the same conditions using the DT model and bearing test rig, and the simulation data with little deviation from the experimental data is obtained. Finally, an attention mechanism and domain adaptation are introduced into the EMTL, with the average accuracy of fault diagnosis of bearing reaching 95.18% with few-label target domain data. The proposed strategy is both theoretically significant and practically useful. The experiment results demonstrate that our method outperforms a series of state-of-the-art methods on the bearing fault diagnosis across various limited data conditions. The proposed strategy effectively solves the few-shot problem, which is both theoretically significant and practically useful.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1111111发布了新的文献求助10
刚刚
摇粒绒完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
111完成签到,获得积分10
1秒前
2秒前
刘明发布了新的文献求助10
2秒前
Gonna发布了新的文献求助10
2秒前
Iva发布了新的文献求助10
2秒前
花坂结衣完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
123发布了新的文献求助10
3秒前
3秒前
4秒前
MRJJJJ完成签到,获得积分10
4秒前
5秒前
5秒前
拉不不发布了新的文献求助10
5秒前
5秒前
5秒前
孙非发布了新的文献求助10
6秒前
李健应助Gonna采纳,获得10
6秒前
orixero应助kiwi采纳,获得10
7秒前
火山蜗牛发布了新的文献求助10
7秒前
慕青应助整齐的小鸽子采纳,获得10
7秒前
7秒前
慕青应助石头采纳,获得10
7秒前
7秒前
8秒前
小超发布了新的文献求助10
8秒前
sunyanghu369发布了新的文献求助10
8秒前
摇粒绒发布了新的文献求助10
9秒前
不器发布了新的文献求助50
9秒前
皇甫成发布了新的文献求助10
9秒前
汉堡包应助2号采纳,获得10
9秒前
杜11完成签到,获得积分10
9秒前
leibingzhuyu完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919