Anticipatory shipping versus emergency shipment: data-driven optimal inventory models for online retailers

皮卡 点(几何) 运筹学 计算机科学 工程类 人工智能 数学 几何学 图像(数学)
作者
Xinxin Ren,Yeming Gong,Yacine Rekik,Xianhao Xu
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:: 1-18
标识
DOI:10.1080/00207543.2023.2219343
摘要

ABSTRACTThe inventory levels of pickup points play an important role for the same-day or next-day pickup and delivery services. The previous inventory optimisation research usually makes an assumption about demand distribution, does not use the real dataset or consider shipping strategies for this problem. In this study, we introduce a new strategy, mixture of anticipatory and emergency shipping, and propose forecasting-optimisation integrated approach to optimise multi-items' inventories in each pickup point based on big data analysis. We explore a real dataset including 23,808,261 records with 54 pickup points and 4018 items. We first cluster the dataset based on the distances between pickup points and the warehouse, then, implement the forecasting-optimisation integrated algorithms to select the more profitable strategy for each group. The result indicates that compared with the original algorithms, our proposed approach can effectively increase the profits, particularly, the novel algorithm, Long Short-Term Memory networks – Quantile Regression, performs better. Additionally, we find that the 100% anticipatory shipping is not necessarily superior to emergency shipment, when the pickup point is farther from the warehouse, the advantage of emergency shipment is more significant. However, the mixture of anticipatory and emergency shipping can contribute to higher profits for online retailers.KEYWORDS: Anticipatory shippingemergency shipmentforecastinginventory managementdata-driven decisiondeep learning AcknowledgementsThe authors would like to thank the 10th IFAC MIM 2022 conference for providing a platform to present the brief version of this study (Ren et al. Citation2022), and thank the experts for their valuable comments and suggestions, which help to improve the quality of the paper greatly.Disclosure statementNo potential conflict of interest was reported by the author(s).Data Availability StatementThe data that supports the findings of this study is openly available on Kaggle Competition platform at http://www.kaggle.com/competitions/favorita-grocery-sales-forecasting/data.Additional informationFundingThis study was supported by the National Natural Science Foundation of China (Grant Nos. 71971095, 71821001, 71620107002).Notes on contributorsXinxin RenXinxin Ren is a Ph.D. candidate of management science and engineering at Huazhong University of Science and Technology. She is a visiting Ph.D. in AIM Institute, Emlyon Business School. Her research interests include decision science, machine learning, big data analysis and decision, electronic commerce, and logistics management.Yeming GongYeming Gong is a professor of management science at Emlyon Business School. He is the institute head of AIM (Artificial Intelligence in Management) Institute and the director of BIC (Business Intelligence Center). He published 100+ papers in journals such as International Journal of Production Research, Production and Operations Management, Transportation Science, European Journal of Information Systems, International Journal of Research in Marketing, European Journal of Operational Research, International Journal of Production Economics, Journal of Business Research, Transportation Research Part E, International Journal of Information Management, OMEGA, Annals of Operations Research, and Journal of the Operational Research Society, among others.Yacine RekikYacine Rekik is a professor of decision sciences at ESCP Business School. His work has appeared in International Journal of Production Research, Decision Sciences, European Journal of Operational Research, International Journal of Production Economics, Production Planning and Control, International Journal of Systems Science, and Transportation Research Part E: Logistics and Transportation Review, among others.Xianhao XuXianhao Xu is a professor of management science and engineering at Huazhong University of Science and Technology. His work has appeared in Transportation Science, European Journal of Operational Research, International Journal of Production Economics, International Journal of Information Management, Journal of the Operational Research Society, Computers & Industrial Engineering, Transportation Research Part E: Logistics and Transportation Review, and International Journal of Production Research, among others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangcy完成签到 ,获得积分10
1秒前
黑眼圈完成签到 ,获得积分10
13秒前
zhongbo完成签到,获得积分10
15秒前
小粒橙完成签到 ,获得积分10
16秒前
小男孩完成签到,获得积分10
16秒前
20秒前
21秒前
coco完成签到,获得积分10
22秒前
爱静静应助qing123采纳,获得30
23秒前
tait发布了新的文献求助10
24秒前
鹅鹅鹅完成签到 ,获得积分10
27秒前
sean118完成签到 ,获得积分10
28秒前
饱满的棒棒糖完成签到 ,获得积分10
31秒前
angelinazh完成签到,获得积分10
32秒前
liyan完成签到 ,获得积分10
41秒前
Lrcx完成签到 ,获得积分10
46秒前
求助完成签到,获得积分0
47秒前
神外王001完成签到 ,获得积分10
51秒前
沉默的钵钵鸡完成签到 ,获得积分20
53秒前
养花低手完成签到 ,获得积分10
53秒前
climber关注了科研通微信公众号
53秒前
sunnyqqz完成签到,获得积分10
56秒前
merry6669完成签到 ,获得积分10
56秒前
59秒前
搜集达人应助韭菜采纳,获得10
1分钟前
喜看财经完成签到,获得积分10
1分钟前
ncuwzq完成签到,获得积分10
1分钟前
nano完成签到 ,获得积分10
1分钟前
岩崖发布了新的文献求助10
1分钟前
carly完成签到 ,获得积分10
1分钟前
YY完成签到 ,获得积分10
1分钟前
qing123完成签到,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
Johnson完成签到 ,获得积分10
1分钟前
自由寻冬完成签到 ,获得积分10
1分钟前
高天雨完成签到 ,获得积分10
1分钟前
古炮完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965780
求助须知:如何正确求助?哪些是违规求助? 3511014
关于积分的说明 11156016
捐赠科研通 3245496
什么是DOI,文献DOI怎么找? 1793089
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804255