A Deep Reinforcement Learning Based Hierarchical Eco-Driving Strategy for Connected and Automated HEVs

强化学习 动力传动系统 控制器(灌溉) 计算机科学 能源消耗 速度限制 燃料效率 车辆动力学 能源管理 汽车工程 工程类 能量(信号处理) 人工智能 扭矩 统计 物理 土木工程 电气工程 数学 生物 农学 热力学
作者
Xiaodong Wu,Jie Li,Chengrui Su,Jiawei Fan,Min Xu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:8
标识
DOI:10.1109/tvt.2023.3283617
摘要

The advancement in vehicle connectivity and autonomy has fostered the development of eco-driving technology, aimed at optimizing driving behaviors to reduce vehicle energy consumption. This study proposed a real-time deep reinforcement learning based hierarchical eco-driving control strategy to optimally control a connected and automated hybrid electric vehicle in a traffic scenario with multiple constraints. The speed optimization layer of the proposed strategy employs a twin-delayed deep deterministic policy gradient (TD3) based reference speed planning strategy to compute the optimized speed, based on a pre-trained optimal policy and observed environmental states. Specifically, to learn the optimal policy, a multi-objective reward function is designed that integrates fuel consumption reward and shaping reward involving car-following and road speed limit. Additionally, a rule-based competition-decision model is embedded within the speed optimization layer to ensure compliance with traffic light rules. In the vehicle controller layer, a real-time controller is implemented to specify appropriate actuator variables for the hybrid powertrain to track the reference speed and conduct energy management control. Simulation results show that the proposed TD3 based eco-driving strategy achieves remarkable energy saving performance by optimizing the speed. Besides, the proposed eco-driving strategy is capable of satisfying the constraint of diverse traffic scenarios, including car-following and traffic light, while also being computationally lightweight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松念露发布了新的文献求助50
刚刚
Hello应助大致若鱼采纳,获得10
刚刚
陈锦鲤完成签到,获得积分10
1秒前
1秒前
Jacky举报心悦求助涉嫌违规
1秒前
勤恳的小松鼠完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
玛卡巴卡完成签到,获得积分10
2秒前
斯文败类应助带回家反馈采纳,获得10
2秒前
透明人发布了新的文献求助10
3秒前
科研通AI6应助Lirui2333采纳,获得10
4秒前
4秒前
小宝发布了新的文献求助30
4秒前
4秒前
5秒前
十二完成签到,获得积分10
5秒前
6秒前
身为风帆发布了新的文献求助10
6秒前
mqq完成签到,获得积分10
6秒前
栀鸢完成签到,获得积分10
6秒前
灰灰给灰灰的求助进行了留言
7秒前
充电宝应助倩倩采纳,获得10
7秒前
healer完成签到,获得积分20
8秒前
8秒前
8秒前
cc完成签到,获得积分10
8秒前
9秒前
十二发布了新的文献求助10
10秒前
11秒前
mqq发布了新的文献求助10
11秒前
能干的邹发布了新的文献求助10
12秒前
star完成签到,获得积分20
12秒前
12秒前
Tonson应助xueshudagongzai采纳,获得10
12秒前
枫竹轩完成签到,获得积分10
12秒前
12秒前
13秒前
清子发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997