A Deep Reinforcement Learning Based Hierarchical Eco-Driving Strategy for Connected and Automated HEVs

强化学习 动力传动系统 控制器(灌溉) 计算机科学 能源消耗 速度限制 燃料效率 车辆动力学 能源管理 汽车工程 工程类 能量(信号处理) 人工智能 扭矩 热力学 统计 电气工程 物理 土木工程 生物 数学 农学
作者
Xiaodong Wu,Jie Li,Chengrui Su,Jiawei Fan,Min Xu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:8
标识
DOI:10.1109/tvt.2023.3283617
摘要

The advancement in vehicle connectivity and autonomy has fostered the development of eco-driving technology, aimed at optimizing driving behaviors to reduce vehicle energy consumption. This study proposed a real-time deep reinforcement learning based hierarchical eco-driving control strategy to optimally control a connected and automated hybrid electric vehicle in a traffic scenario with multiple constraints. The speed optimization layer of the proposed strategy employs a twin-delayed deep deterministic policy gradient (TD3) based reference speed planning strategy to compute the optimized speed, based on a pre-trained optimal policy and observed environmental states. Specifically, to learn the optimal policy, a multi-objective reward function is designed that integrates fuel consumption reward and shaping reward involving car-following and road speed limit. Additionally, a rule-based competition-decision model is embedded within the speed optimization layer to ensure compliance with traffic light rules. In the vehicle controller layer, a real-time controller is implemented to specify appropriate actuator variables for the hybrid powertrain to track the reference speed and conduct energy management control. Simulation results show that the proposed TD3 based eco-driving strategy achieves remarkable energy saving performance by optimizing the speed. Besides, the proposed eco-driving strategy is capable of satisfying the constraint of diverse traffic scenarios, including car-following and traffic light, while also being computationally lightweight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anne完成签到 ,获得积分10
刚刚
Inter09发布了新的文献求助10
刚刚
Starry完成签到,获得积分10
刚刚
drsquall发布了新的文献求助10
1秒前
Joan_89驳回了ww应助
1秒前
1秒前
连山守护应助dff采纳,获得10
1秒前
现代的傻姑完成签到,获得积分20
2秒前
比比完成签到,获得积分10
3秒前
852应助Sumeru采纳,获得10
3秒前
充电宝应助林深时见鹿采纳,获得10
3秒前
4秒前
英吉利25发布了新的文献求助10
4秒前
研友_VZG7GZ应助Kikua采纳,获得30
4秒前
5秒前
ark861023发布了新的文献求助10
5秒前
上官若男应助mike采纳,获得10
5秒前
桀桀桀发布了新的文献求助10
5秒前
小小咸鱼完成签到 ,获得积分10
6秒前
好运吗喽完成签到,获得积分10
7秒前
7秒前
Tourist应助Jankin采纳,获得10
7秒前
CodeCraft应助Lucien采纳,获得10
7秒前
Allen完成签到 ,获得积分10
8秒前
盛事不朽完成签到 ,获得积分10
8秒前
哈哈哈发布了新的文献求助30
8秒前
9秒前
H与K完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
狗子发布了新的文献求助10
11秒前
Yry完成签到 ,获得积分10
12秒前
yhy发布了新的文献求助10
13秒前
Jasper应助桑桑采纳,获得10
13秒前
爆米花应助一車十子寒采纳,获得10
14秒前
DSR发布了新的文献求助10
14秒前
胡图图完成签到,获得积分0
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993