A Deep Reinforcement Learning Based Hierarchical Eco-Driving Strategy for Connected and Automated HEVs

强化学习 动力传动系统 控制器(灌溉) 计算机科学 能源消耗 速度限制 燃料效率 车辆动力学 能源管理 汽车工程 工程类 能量(信号处理) 人工智能 扭矩 统计 物理 土木工程 电气工程 数学 生物 农学 热力学
作者
Xiaodong Wu,Jie Li,Chengrui Su,Jiawei Fan,Min Xu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:8
标识
DOI:10.1109/tvt.2023.3283617
摘要

The advancement in vehicle connectivity and autonomy has fostered the development of eco-driving technology, aimed at optimizing driving behaviors to reduce vehicle energy consumption. This study proposed a real-time deep reinforcement learning based hierarchical eco-driving control strategy to optimally control a connected and automated hybrid electric vehicle in a traffic scenario with multiple constraints. The speed optimization layer of the proposed strategy employs a twin-delayed deep deterministic policy gradient (TD3) based reference speed planning strategy to compute the optimized speed, based on a pre-trained optimal policy and observed environmental states. Specifically, to learn the optimal policy, a multi-objective reward function is designed that integrates fuel consumption reward and shaping reward involving car-following and road speed limit. Additionally, a rule-based competition-decision model is embedded within the speed optimization layer to ensure compliance with traffic light rules. In the vehicle controller layer, a real-time controller is implemented to specify appropriate actuator variables for the hybrid powertrain to track the reference speed and conduct energy management control. Simulation results show that the proposed TD3 based eco-driving strategy achieves remarkable energy saving performance by optimizing the speed. Besides, the proposed eco-driving strategy is capable of satisfying the constraint of diverse traffic scenarios, including car-following and traffic light, while also being computationally lightweight.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
djbj2022发布了新的文献求助10
刚刚
希望天下0贩的0应助创创采纳,获得10
刚刚
善学以致用应助冬亦采纳,获得10
刚刚
1秒前
李健应助小凯采纳,获得10
1秒前
hsing完成签到,获得积分10
1秒前
wisdom完成签到,获得积分10
1秒前
2秒前
xiamu.发布了新的文献求助10
2秒前
3秒前
我想毕业发布了新的文献求助10
3秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
星辰大海应助科研欢采纳,获得10
9秒前
10秒前
笨笨完成签到,获得积分10
10秒前
为你比拟发布了新的文献求助10
10秒前
10秒前
11秒前
领导范儿应助sin采纳,获得10
11秒前
冬亦发布了新的文献求助10
11秒前
Jerry20184发布了新的文献求助10
13秒前
小二郎应助从容哈密瓜采纳,获得10
14秒前
15秒前
16秒前
脑洞疼应助车厘子采纳,获得10
16秒前
17秒前
18秒前
淡淡瓜子完成签到 ,获得积分10
18秒前
Halsey完成签到,获得积分20
18秒前
20秒前
Lucas应助johnzsin采纳,获得10
20秒前
20秒前
许鑫蓁完成签到 ,获得积分10
21秒前
21秒前
JW发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430695
求助须知:如何正确求助?哪些是违规求助? 4543745
关于积分的说明 14189043
捐赠科研通 4462220
什么是DOI,文献DOI怎么找? 2446443
邀请新用户注册赠送积分活动 1437819
关于科研通互助平台的介绍 1414530