Platinum–Lead–Bismuth/Platinum–Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis

脱氢 化学 甲酸 催化作用 铂金 无机化学 选择性 傅里叶变换红外光谱 吸附 化学工程 有机化学 工程类
作者
Xinrui Hu,Zhengyi Xiao,Weizhen Wang,Lingzheng Bu,Zhengchao An,Shangheng Liu,Chih‐Wen Pao,Changhong Zhan,Zhiwei Hu,Zhiqing Yang,Yucheng Wang,Xiaoqing Huang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (28): 15109-15117 被引量:50
标识
DOI:10.1021/jacs.3c00262
摘要

Designing platinum (Pt)-based formic acid oxidation reaction (FAOR) catalysts with high performance and high selectivity of direct dehydrogenation pathway for direct formic acid fuel cell (DFAFC) is desirable yet challenging. Herein, we report a new class of surface-uneven PtPbBi/PtBi core/shell nanoplates (PtPbBi/PtBi NPs) as the highly active and selective FAOR catalysts, even in the complicated membrane electrode assembly (MEA) medium. They can achieve unprecedented specific and mass activities of 25.1 mA cm-2 and 7.4 A mgPt-1 for FAOR, 156 and 62 times higher than those of commercial Pt/C, respectively, which is the highest for a FAOR catalyst by far. Simultaneously, they show highly weak adsorption of CO and high dehydrogenation pathway selectivity in the FAOR test. More importantly, the PtPbBi/PtBi NPs can reach the power density of 161.5 mW cm-2, along with a stable discharge performance (45.8% decay of power density at 0.4 V for 10 h), demonstrating great potential in a single DFAFC device. The in situ Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) results collectively reveal a local electron interaction between PtPbBi and PtBi. In addition, the high-tolerance PtBi shell can effectively inhibit the production/adsorption of CO, resulting in the complete presence of the dehydrogenation pathway for FAOR. This work demonstrates an efficient Pt-based FAOR catalyst with 100% direct reaction selectivity, which is of great significance for driving the commercialization of DFAFC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zho发布了新的文献求助30
1秒前
1秒前
ywang发布了新的文献求助10
1秒前
ZD小草完成签到 ,获得积分10
2秒前
健忘曼冬完成签到,获得积分10
3秒前
hkl1542发布了新的文献求助50
4秒前
5秒前
6秒前
KYN完成签到,获得积分10
7秒前
7秒前
桐桐应助叶未晞yi采纳,获得10
7秒前
7秒前
su发布了新的文献求助10
8秒前
123456789完成签到,获得积分10
10秒前
炙热的如柏完成签到,获得积分20
10秒前
11秒前
12秒前
HWei完成签到,获得积分10
12秒前
Ryan完成签到,获得积分10
12秒前
13秒前
Jzhang应助丙队长采纳,获得10
15秒前
16秒前
GXY发布了新的文献求助30
17秒前
Lucas应助专注秋尽采纳,获得10
17秒前
17秒前
754完成签到,获得积分10
17秒前
20秒前
学习猴发布了新的文献求助10
20秒前
充电宝应助炙热的如柏采纳,获得10
21秒前
所所应助qzaima采纳,获得10
21秒前
米兰达完成签到 ,获得积分0
22秒前
xg发布了新的文献求助10
24秒前
Loooong应助Ni采纳,获得10
25秒前
25秒前
WZ0904发布了新的文献求助10
25秒前
顾矜应助博ge采纳,获得10
27秒前
27秒前
Lotus发布了新的文献求助10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824