DNA Variation in Spinal Pathologies: Genetics Running Down the Spine

医学 人口 变性(医学) 生物信息学 生物 病理 环境卫生
作者
Andre J. van Wijnen,Eric A. Lewallen
出处
期刊:Journal of Bone and Joint Surgery, American Volume [Journal of Bone and Joint Surgery]
卷期号:105 (11): e27-e27
标识
DOI:10.2106/jbjs.23.00330
摘要

Commentary Nearly 400 types of skeletal malformations, including those that involve the spine, have been characterized by molecular and cellular analyses1. Identification of genetic components that control the integrity of intervertebral discs—and that predispose to spinal degeneration in aging patients when mutated—represents a challenging goal. Spinal conditions that occur later in life may emerge from faulty musculoskeletal tissue repair after accidental injury and the influences of comorbidities. The collective stochastic and often undocumented events in the life of a patient can easily complicate attempts at defining genetic predispositions. To manage the statistical noise that comes from random mutations within the human population (“nature”) and the randomness of life’s events (“nurture”), it is necessary to examine massive genetic data sets with many thousands of patients. Technological advances that allow cost-effective DNA sequencing have made it feasible to compare large patient populations matched on the basis of specific codes for medical conditions. Consequently, several studies have made impressive attempts at defining genetic variations linked to a range of surgically relevant musculoskeletal complications, including degenerative rotator cuff disease2, arthroplasty3, adhesive capsulitis of the shoulder4, and end-stage knee osteoarthritis5. The current paper by Bovonratwet et al. at the Hospital for Special Surgery in New York provides the latest installment in a growing set of orthopaedic studies in this journal that investigate the relationship between genetic variations and the risk of surgery for spinal conditions. Similar to prior published efforts by Yanik et al.2, Brüggemann et al.3, and Kulm et al.4,5, the study by Bovonratwet et al. leverages the power of the UK Biobank, which has genetic data for about 400,000 patients, of whom a total of about 20,000 (∼5%) had 1 of 4 spinal conditions (i.e., lumbar spondylolisthesis, spinal stenosis, degenerative disc disease, and pseudarthrosis after spinal fusion). Results from this large data set (“training population”) were then tested using the FinnGen database (“test population”) for validation. The analysis yielded multiple different genetic variants across 7 chromosomes. On average, the authors discovered 2 distinct loci per spinal condition. These findings are consistent with the genetic complexities of spinal conditions and suggest that the diseases are polygenic, as expected. Several nucleotide variants associated with 4 common spinal conditions were located in loci encoding anonymous genes that have not been experimentally explored. Degenerative disc disease was associated with a locus containing 2 genes that affect chondrogenesis: CHST3 (for carbohydrate sulfotransferase 3) promotes sulfation of chondroitin, and SMAD3 is the inducible target of chondrogenic transforming growth factor (TGF)-β signaling. Remarkably, 1 chromosomal region significantly associated with both lumbar spondylolisthesis and spinal stenosis contained overlapping sets of genes (i.e., GFPT1 and NFU1) that encode proteins involved in cell metabolism. These genes represent attractive targets for studies on genetic causality for these 2 spinal conditions. While it is tempting to speculate about potential mechanistic implications, the genetic biomarkers for spinal conditions mapped to large regions containing several genes. Whether these genes are even expressed in cell types and tissues relevant to homeostasis and repair of spinal tissues remains to be determined. Lack of similarity among studies indicates that endogenous tissue-specific repair processes may be predominant in the genetic landscape. One major strength of this study is the control for demographics and comorbidities. Yet, even with access to nearly 400,000 people who form a fairly homogeneous study cohort (i.e., White elderly people in Britain), this population size is not nearly large enough to identify the many genes that undoubtedly contribute to spinal conditions. The observation that only a few genetic variants were replicated in the Finnish cohort may further reflect the polygenicity of disease factors and genetic differences of Finnish patients. In closing, just as our emotions can run up or down our spine depending on whether we are in a positive or negative mood, genetic variation appears to affect spinal diseases. Some DNA mutations may literally be running down our spine, by destroying either disc integrity or our capacity for repair after injury. The positive news is that recognition of genetic predispositions may enhance consideration of behavioral modifications or guide surgical decisions. The paper by Bovonratwet et al. will inspire future studies, while bringing us 1 step closer to that goal.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助轻松豁采纳,获得10
1秒前
1秒前
1秒前
虚幻白玉发布了新的文献求助10
1秒前
2秒前
fuiee完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
领导范儿应助快乐小天使采纳,获得10
3秒前
陈陈发布了新的文献求助10
3秒前
李斌奇发布了新的文献求助10
3秒前
PHI发布了新的文献求助10
3秒前
蛋蛋姐姐完成签到,获得积分10
4秒前
刺猬hedgehog完成签到,获得积分10
4秒前
科研人发布了新的文献求助10
4秒前
capx完成签到,获得积分10
4秒前
客念发布了新的文献求助10
4秒前
冰魄落叶完成签到 ,获得积分10
4秒前
5秒前
Foxjker完成签到 ,获得积分10
5秒前
大个应助草草草草采纳,获得20
6秒前
6秒前
6秒前
6秒前
wangping发布了新的文献求助10
7秒前
赵志浩完成签到,获得积分10
7秒前
汤柏钧发布了新的文献求助10
7秒前
冷静书白发布了新的文献求助10
7秒前
7秒前
xilin发布了新的文献求助10
7秒前
7秒前
Oasis完成签到,获得积分10
8秒前
失落的叶完成签到 ,获得积分10
8秒前
8秒前
8秒前
一一一完成签到 ,获得积分10
8秒前
8秒前
DreamerOj发布了新的文献求助30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803