亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying Multiple Propagation Sources With Motif-Based Graph Convolutional Networks for Social Networks

计算机科学 主题(音乐) 图形 理论计算机科学 数据挖掘 人工智能 声学 物理
作者
Kailin Yang,Qing Bao,Hongjun Qiu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 61630-61645
标识
DOI:10.1109/access.2023.3287214
摘要

Identifying the sources of propagation in social networks, such as the misinformation propagation, is one of the key issues recently. Most existing studies assume the underlying propagation model is known, which is difficult to obtain in practice. Recent efforts have been devoted to detect multiple sources in real-world situations, and the social influence of neighbors in the propagation is assumed to be identical. However, this assumption will result in inaccurate results as the infection state of a node is determined by its critical neighbors. In this paper, we fill this gap by capturing social influence of neighbors with structural properties in social networks. For instance, opinions are more likely to spread via closely connected friends within small groups. Here we propose a Motif-based Graph Convolutional Networks for Source Identification (MGCNSI) framework based on the GCN-based source identification approach. Specifically, different network motifs are used to capture different types of structural properties. Then each motif extracts the critical neighbors of a particular type, and a motif-based graph convolutional layer is constructed to aggregate critical neighbors for that motif. To adapt to underlying propagation mechanisms, an attention mechanism for aggregation is designed to automatically assign higher weights to more informative motifs. The empirical results demonstrate that MGCNSI outperforms several benchmark methods on both synthetic and real-world networks. The advantage is most obvious for networks with denser node neighborhoods, where MGCNSI can select critical neighbors from the larger neighbor sets. How the motifs can capture the social influence and the underlying critical paths of propagation is also illustrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
打打应助沉静晓啸采纳,获得10
19秒前
20秒前
研友_89Nm7L发布了新的文献求助10
23秒前
研友_89Nm7L完成签到,获得积分10
30秒前
lingling完成签到 ,获得积分10
41秒前
45秒前
46秒前
kkk完成签到 ,获得积分10
48秒前
48秒前
佛见笑关注了科研通微信公众号
50秒前
沉静晓啸发布了新的文献求助10
50秒前
lhr发布了新的文献求助10
52秒前
fuhua发布了新的文献求助10
55秒前
FashionBoy应助wuxiaojiao采纳,获得10
55秒前
佛见笑发布了新的文献求助50
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
kabosu应助111采纳,获得10
1分钟前
lhr完成签到,获得积分10
1分钟前
1分钟前
冷冷完成签到 ,获得积分10
1分钟前
wangdong应助111采纳,获得10
1分钟前
kabosu应助111采纳,获得10
1分钟前
科研通AI2S应助111采纳,获得10
1分钟前
领导范儿应助111采纳,获得10
1分钟前
汉堡包应助111采纳,获得10
1分钟前
无花果应助111采纳,获得10
1分钟前
田様应助111采纳,获得10
1分钟前
wuxiaojiao发布了新的文献求助10
1分钟前
完美世界应助111采纳,获得10
1分钟前
大个应助111采纳,获得10
1分钟前
星辰大海应助111采纳,获得10
1分钟前
上官若男应助111采纳,获得10
1分钟前
在水一方应助111采纳,获得10
1分钟前
wangdong应助111采纳,获得10
1分钟前
大模型应助111采纳,获得10
1分钟前
深情安青应助111采纳,获得10
1分钟前
顾矜应助111采纳,获得10
1分钟前
ding应助111采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671249
求助须知:如何正确求助?哪些是违规求助? 3228107
关于积分的说明 9778506
捐赠科研通 2938375
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760497
科研通“疑难数据库(出版商)”最低求助积分说明 735991