Automated defect recognition (ADR) for monitoring industrial components using neural networks with phased array ultrasonic images

卷积神经网络 计算机科学 人工智能 相控阵 特征(语言学) 人工神经网络 传感器 结构健康监测 过程(计算) 光圈(计算机存储器) 超声波传感器 模式识别(心理学) 梁(结构) 计算机视觉 声学 材料科学 光学 物理 电信 天线(收音机) 操作系统 哲学 语言学 复合材料
作者
Thulsiram Gantala,P. Sudharsan,Krishnan Balasubramaniam
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (9): 094007-094007
标识
DOI:10.1088/1361-6501/acde01
摘要

Abstract In this paper, we propose a framework to automate the process of defect characterizing for industrial structural component health monitoring by implementing automatic defect recognition (ADR) system. The ADR system consists of a convolutional neural network (CNN) and an edge detection algorithm medial axis transform (MAT). The CNN learns the defect feature space from the training dataset to detect and classify the defect. The MAT algorithm is used upon post-validation of the ADR, and the predicted feature’s edges are extracted to size them. The ADR is trained using the simulation-assisted finite element (FE) simulation datasets consisting of side drilled holes (SDH) and crack defects images. The training datasets are generated by introducing virtual array source aperture (VASA), which is a full matrix capture (FMC) scanning strategy by activating the group of elements in an active aperture with predefined focal laws to form a focused beam at a virtual source in the material. The VASA technique uses multiple virtual sources and active aperture positions in a given transducer, which are determined using the Poisson point process. The ultrasound beam is excited in sequence on each virtual source, and the reflected wave is recoded using all the transducers in the array to create FMC A-scans signals. The total focusing method (TFM) technique is a postprocessing algorithm implemented on the FMC signal to generate an image. A large quantity of training datasets is created for each defect by modeling various FE models with varying defect morphology. To create nearly close to experimental images, the experimental noise is introduced in the simulated images. The three separate ADR systems are trained with individual defects class and combined defects. The effectiveness of the trained ADR system is validated by conducting experiments on the plates with laboratory-made SDH and crack defects, the casting components, and weldments with unknown defect types and sizes. The mAP of ADR training is 82%, and the F1-score on testing image classification is 89%. The ADR system could detect and size the smallest defect is 0.219 mm, which is λ L /5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王姐姐完成签到,获得积分10
刚刚
大马猴发布了新的文献求助10
刚刚
SciGPT应助啦啦啦采纳,获得10
刚刚
唐晓秦应助传统的元龙采纳,获得20
1秒前
糖醋排骨公主完成签到,获得积分10
1秒前
1秒前
天天快乐应助兴奋的惜天采纳,获得10
1秒前
大模型应助泡面姐姐采纳,获得10
1秒前
1秒前
丘比特应助火山暴涨球技采纳,获得10
2秒前
整挺好发布了新的文献求助30
2秒前
3秒前
3秒前
脑洞疼应助正直凛采纳,获得10
4秒前
bigfish关注了科研通微信公众号
5秒前
6秒前
cctv18应助孤独曲奇采纳,获得10
6秒前
cctv18应助麦子采纳,获得10
6秒前
勇敢的心发布了新的文献求助10
6秒前
cyx应助北风采纳,获得20
7秒前
7秒前
8秒前
8秒前
JamesPei应助feedyoursoul采纳,获得10
9秒前
昵称发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
蔡菜菜完成签到 ,获得积分10
11秒前
高兴吐司发布了新的文献求助10
11秒前
11秒前
香蕉觅云应助王晓宇采纳,获得10
12秒前
12秒前
Kiki发布了新的文献求助10
12秒前
12秒前
冷静的夏槐完成签到,获得积分10
12秒前
扶光完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
The Oxford Handbook of Transcranial Stimulation (the second edition) 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3437754
求助须知:如何正确求助?哪些是违规求助? 3034816
关于积分的说明 8956013
捐赠科研通 2722784
什么是DOI,文献DOI怎么找? 1493558
科研通“疑难数据库(出版商)”最低求助积分说明 690286
邀请新用户注册赠送积分活动 686662