Model free Reinforcement Learning to determine pricing policy for car parking lots

占用率 收入 计算机科学 动态定价 强化学习 大都市区 停车指引和信息 工作(物理) 运筹学 控制(管理) 运输工程 交通拥挤 停车位 收益管理 业务 经济 微观经济学 财务 工程类 人工智能 建筑工程 病理 机械工程 医学
作者
K. Sowmya,Meera Dhabu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120532-120532 被引量:7
标识
DOI:10.1016/j.eswa.2023.120532
摘要

Finding a parking space has not only become painful but also costs a lot in most of the metropolitan cities. With the increase in number of vehicles and limited resources such as manpower and space, the need for effective management of parking lots has increased. Improper management of parking lots can have negative consequences such as traffic congestion, wastage of time in search of parking spaces, air pollution and even loss of revenue for the parking lot managers. Dynamic pricing is a powerful tool to control the behavior of drivers by diverting them towards the unoccupied and cheaper parking lots. Though there are several existing dynamic pricing strategies, determining the right prices is quite challenging due to lack of knowledge of drivers’ behavior and several uncertainties like harsh weather and special days. In this paper Reinforcement Learning(RL) technique called Q-learning is used to calculate the dynamic prices for parking lots on hourly basis without the need of prior information about the system. Crucial factors like distance of the parking lots from the city centers, weather and holidays are considered in the proposed algorithm to achieve better accuracy. Price Elasticity of Demand (PED) is used in the proposed work to calculate the new state(occupancy) when an action(dynamic price charged by the parking lot owner) is taken place. Hourly prices are estimated using the proposed algorithm and simulation results show that the calculated prices can efficiently manage parking occupancy during peak and off peak hours. The simulation output also shows that the proposed algorithm can successfully increase the revenue of the parking lot owners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鑫鑫子发布了新的文献求助10
刚刚
saluo完成签到,获得积分10
刚刚
ccshi完成签到,获得积分10
1秒前
莲枳榴莲发布了新的文献求助10
1秒前
AprilLeung完成签到 ,获得积分10
1秒前
刘小蕊发布了新的文献求助10
2秒前
你长得很下饭所以完成签到,获得积分10
3秒前
王多鱼完成签到,获得积分10
3秒前
道以文完成签到,获得积分10
4秒前
无奈的若风完成签到,获得积分10
4秒前
4秒前
追寻的水之完成签到,获得积分10
4秒前
SciGPT应助VTMS采纳,获得10
4秒前
沉默芸发布了新的文献求助10
5秒前
6秒前
跳跃的安阳完成签到,获得积分10
6秒前
7秒前
Lermta完成签到,获得积分10
7秒前
7秒前
李雷完成签到 ,获得积分10
7秒前
8秒前
xingchangrui发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
乐悠悠完成签到 ,获得积分10
11秒前
大王最厉害啦完成签到,获得积分10
11秒前
11秒前
ARNAMO完成签到,获得积分10
11秒前
鑫鑫子完成签到 ,获得积分10
12秒前
12秒前
酷波er应助曾经的便当采纳,获得10
12秒前
13秒前
13秒前
冷傲的道罡完成签到,获得积分10
14秒前
隐形曼青应助如意的芙采纳,获得10
14秒前
zhr发布了新的文献求助80
14秒前
邓可新完成签到,获得积分10
14秒前
雪崩发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396402
求助须知:如何正确求助?哪些是违规求助? 4516808
关于积分的说明 14061325
捐赠科研通 4428678
什么是DOI,文献DOI怎么找? 2432127
邀请新用户注册赠送积分活动 1424444
关于科研通互助平台的介绍 1403588