Model free Reinforcement Learning to determine pricing policy for car parking lots

占用率 收入 计算机科学 动态定价 强化学习 大都市区 停车指引和信息 工作(物理) 运筹学 控制(管理) 运输工程 交通拥挤 停车位 收益管理 业务 经济 微观经济学 财务 工程类 人工智能 建筑工程 病理 机械工程 医学
作者
K. Sowmya,Meera Dhabu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120532-120532 被引量:3
标识
DOI:10.1016/j.eswa.2023.120532
摘要

Finding a parking space has not only become painful but also costs a lot in most of the metropolitan cities. With the increase in number of vehicles and limited resources such as manpower and space, the need for effective management of parking lots has increased. Improper management of parking lots can have negative consequences such as traffic congestion, wastage of time in search of parking spaces, air pollution and even loss of revenue for the parking lot managers. Dynamic pricing is a powerful tool to control the behavior of drivers by diverting them towards the unoccupied and cheaper parking lots. Though there are several existing dynamic pricing strategies, determining the right prices is quite challenging due to lack of knowledge of drivers’ behavior and several uncertainties like harsh weather and special days. In this paper Reinforcement Learning(RL) technique called Q-learning is used to calculate the dynamic prices for parking lots on hourly basis without the need of prior information about the system. Crucial factors like distance of the parking lots from the city centers, weather and holidays are considered in the proposed algorithm to achieve better accuracy. Price Elasticity of Demand (PED) is used in the proposed work to calculate the new state(occupancy) when an action(dynamic price charged by the parking lot owner) is taken place. Hourly prices are estimated using the proposed algorithm and simulation results show that the calculated prices can efficiently manage parking occupancy during peak and off peak hours. The simulation output also shows that the proposed algorithm can successfully increase the revenue of the parking lot owners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的乘云完成签到,获得积分10
刚刚
吃点红糖馒头完成签到,获得积分10
1秒前
良月二十一完成签到 ,获得积分10
1秒前
斯文败类应助听粥采纳,获得10
2秒前
可爱的函函应助strings采纳,获得10
2秒前
2秒前
仚屳完成签到,获得积分10
2秒前
Naixi完成签到,获得积分10
2秒前
今后应助HU采纳,获得10
2秒前
su完成签到 ,获得积分10
4秒前
平淡的依白完成签到,获得积分20
4秒前
xinchengzhu关注了科研通微信公众号
4秒前
爱静静应助tao采纳,获得10
5秒前
iNk应助Rebekah采纳,获得10
5秒前
HopeStar完成签到,获得积分10
6秒前
树叶有专攻完成签到,获得积分10
6秒前
6秒前
田様应助Mia采纳,获得20
6秒前
所所应助吃点红糖馒头采纳,获得10
6秒前
今后应助PSCs采纳,获得10
6秒前
7秒前
duguqiubai4发布了新的文献求助10
7秒前
独特的沛凝完成签到,获得积分10
9秒前
思源应助淇淇怪怪采纳,获得10
9秒前
领导范儿应助徐慕源采纳,获得10
9秒前
听粥完成签到,获得积分10
10秒前
高高迎蓉完成签到,获得积分10
10秒前
豆花完成签到,获得积分10
10秒前
SYLH应助风趣的无剑采纳,获得10
10秒前
悲伤水凝胶完成签到,获得积分10
10秒前
鲸鱼完成签到,获得积分10
12秒前
huangqinxue完成签到,获得积分10
12秒前
13秒前
13秒前
Tina完成签到,获得积分10
13秒前
电催化皮皮完成签到,获得积分10
13秒前
大模型应助阿蒙采纳,获得10
14秒前
duguqiubai4完成签到,获得积分10
14秒前
15秒前
meta完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678