清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Model free Reinforcement Learning to determine pricing policy for car parking lots

占用率 收入 计算机科学 动态定价 强化学习 大都市区 停车指引和信息 工作(物理) 运筹学 控制(管理) 运输工程 交通拥挤 停车位 收益管理 业务 经济 微观经济学 财务 工程类 人工智能 建筑工程 病理 机械工程 医学
作者
K. Sowmya,Meera Dhabu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:230: 120532-120532 被引量:7
标识
DOI:10.1016/j.eswa.2023.120532
摘要

Finding a parking space has not only become painful but also costs a lot in most of the metropolitan cities. With the increase in number of vehicles and limited resources such as manpower and space, the need for effective management of parking lots has increased. Improper management of parking lots can have negative consequences such as traffic congestion, wastage of time in search of parking spaces, air pollution and even loss of revenue for the parking lot managers. Dynamic pricing is a powerful tool to control the behavior of drivers by diverting them towards the unoccupied and cheaper parking lots. Though there are several existing dynamic pricing strategies, determining the right prices is quite challenging due to lack of knowledge of drivers’ behavior and several uncertainties like harsh weather and special days. In this paper Reinforcement Learning(RL) technique called Q-learning is used to calculate the dynamic prices for parking lots on hourly basis without the need of prior information about the system. Crucial factors like distance of the parking lots from the city centers, weather and holidays are considered in the proposed algorithm to achieve better accuracy. Price Elasticity of Demand (PED) is used in the proposed work to calculate the new state(occupancy) when an action(dynamic price charged by the parking lot owner) is taken place. Hourly prices are estimated using the proposed algorithm and simulation results show that the calculated prices can efficiently manage parking occupancy during peak and off peak hours. The simulation output also shows that the proposed algorithm can successfully increase the revenue of the parking lot owners.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热爱芬达的1s完成签到,获得积分10
1秒前
cece发布了新的文献求助30
3秒前
Beyond095完成签到 ,获得积分10
27秒前
lling完成签到 ,获得积分10
29秒前
顾矜应助科研通管家采纳,获得10
46秒前
田様应助科研通管家采纳,获得10
46秒前
cece完成签到,获得积分20
55秒前
陶醉的小海豚完成签到,获得积分10
1分钟前
平淡冬亦完成签到 ,获得积分10
1分钟前
1分钟前
危机的慕卉完成签到 ,获得积分10
1分钟前
紫熊完成签到,获得积分10
1分钟前
yindi1991完成签到 ,获得积分10
1分钟前
科研通AI6应助呵呵心情采纳,获得10
1分钟前
机智的嘻嘻完成签到 ,获得积分10
1分钟前
fan完成签到,获得积分10
1分钟前
1分钟前
小蚂蚁完成签到 ,获得积分10
1分钟前
貔貅完成签到 ,获得积分10
1分钟前
哥哥完成签到,获得积分10
1分钟前
wayne完成签到 ,获得积分10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
老福贵儿应助哥哥采纳,获得10
2分钟前
酷波er应助哥哥采纳,获得10
2分钟前
NexusExplorer应助哥哥采纳,获得10
2分钟前
CH完成签到 ,获得积分10
2分钟前
毛毛弟完成签到 ,获得积分10
2分钟前
陈秋完成签到,获得积分10
2分钟前
丰富的澜完成签到 ,获得积分10
2分钟前
呵呵心情发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
丢星完成签到 ,获得积分10
2分钟前
慧慧34完成签到 ,获得积分10
2分钟前
2分钟前
ni发布了新的文献求助10
2分钟前
蔡勇强完成签到 ,获得积分10
2分钟前
Jiang 小白发布了新的文献求助10
2分钟前
优秀棒棒糖完成签到 ,获得积分10
3分钟前
傅姐完成签到 ,获得积分10
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771608
捐赠科研通 4615167
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467551