Model free Reinforcement Learning to determine pricing policy for car parking lots

占用率 收入 计算机科学 动态定价 强化学习 大都市区 停车指引和信息 工作(物理) 运筹学 控制(管理) 运输工程 交通拥挤 停车位 收益管理 业务 经济 微观经济学 财务 工程类 人工智能 建筑工程 病理 机械工程 医学
作者
K. Sowmya,Meera Dhabu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:230: 120532-120532 被引量:7
标识
DOI:10.1016/j.eswa.2023.120532
摘要

Finding a parking space has not only become painful but also costs a lot in most of the metropolitan cities. With the increase in number of vehicles and limited resources such as manpower and space, the need for effective management of parking lots has increased. Improper management of parking lots can have negative consequences such as traffic congestion, wastage of time in search of parking spaces, air pollution and even loss of revenue for the parking lot managers. Dynamic pricing is a powerful tool to control the behavior of drivers by diverting them towards the unoccupied and cheaper parking lots. Though there are several existing dynamic pricing strategies, determining the right prices is quite challenging due to lack of knowledge of drivers’ behavior and several uncertainties like harsh weather and special days. In this paper Reinforcement Learning(RL) technique called Q-learning is used to calculate the dynamic prices for parking lots on hourly basis without the need of prior information about the system. Crucial factors like distance of the parking lots from the city centers, weather and holidays are considered in the proposed algorithm to achieve better accuracy. Price Elasticity of Demand (PED) is used in the proposed work to calculate the new state(occupancy) when an action(dynamic price charged by the parking lot owner) is taken place. Hourly prices are estimated using the proposed algorithm and simulation results show that the calculated prices can efficiently manage parking occupancy during peak and off peak hours. The simulation output also shows that the proposed algorithm can successfully increase the revenue of the parking lot owners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Native007完成签到,获得积分10
1秒前
Lc发布了新的文献求助10
1秒前
田様应助明天会更美好采纳,获得100
1秒前
11发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
Bethune完成签到,获得积分10
3秒前
感动的寒云应助Pheonix1998采纳,获得30
3秒前
我是老大应助Sylvia0528采纳,获得10
3秒前
愉快的宛儿完成签到,获得积分20
3秒前
3秒前
ni完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
一心扑在搞学术完成签到,获得积分20
4秒前
NorthWang完成签到,获得积分10
5秒前
En给勤恳的仰的求助进行了留言
5秒前
大黄人发布了新的文献求助10
6秒前
桐桐应助单纯的晓曼采纳,获得10
6秒前
苏小安发布了新的文献求助10
6秒前
鞘皮发布了新的文献求助10
6秒前
小管完成签到,获得积分10
6秒前
ziwei发布了新的文献求助10
6秒前
严惜完成签到,获得积分10
6秒前
6秒前
sky完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
尉迟希望发布了新的文献求助10
8秒前
qqq发布了新的文献求助40
8秒前
8秒前
纪晓灵完成签到,获得积分10
8秒前
狂奔弟弟完成签到 ,获得积分10
8秒前
hdy完成签到,获得积分10
8秒前
NorthWang发布了新的文献求助10
9秒前
xuemengyao完成签到,获得积分20
9秒前
CodeCraft应助喜喜采纳,获得10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016449
求助须知:如何正确求助?哪些是违规求助? 3556606
关于积分的说明 11321734
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812434
邀请新用户注册赠送积分活动 887994
科研通“疑难数据库(出版商)”最低求助积分说明 812060