计算机科学
事件(粒子物理)
论证(复杂分析)
信息抽取
嵌入
门控
代表(政治)
匹配(统计)
接头(建筑物)
骨料(复合)
萃取(化学)
片段(逻辑)
数据挖掘
人工智能
关系抽取
自然语言处理
算法
数学
化学
色谱法
统计
心理学
神经科学
法学
政治学
材料科学
建筑工程
量子力学
复合材料
工程类
物理
生物化学
政治
作者
Baocai Yin,Hua Wu,Weiyi Kong
摘要
Event extraction, as one of the difficult tasks of information extraction, can quickly obtain valuable information from the massive information on the Internet. This paper proposes a joint event extraction model based on RoBERTa-wwm-ext and gating mechanism for document-level long text data, which not only uses the prior knowledge from event types and pre-trained language models, but also uses gated fusion module to aggregate information in the event argument extraction tasks to enhance entity representation and splices entity type embedding, thereby enhancing the correlation among events, arguments and argument roles in the text, and improving the recognition accuracy of the arguments of each event in the document. Finally, the effectiveness of the model is verified on the public dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI