嵌合抗原受体
生物信息学
CD19
靶向治疗
细胞疗法
癌症
癌症研究
受体
联合疗法
抗原
医学
生物
细胞
计算生物学
免疫学
药理学
免疫疗法
内科学
生物化学
基因
作者
Rimjhim Mohanty,Manoswini Manoswini,Ajit Kumar Dhal,Niladri Ganguly
标识
DOI:10.1016/j.compbiomed.2022.106285
摘要
Cellular therapy has emerged as a key tool in the treatment of hematological malignancies. An advanced cell therapy known as chimeric antigen receptor T cell therapy (CAR T-cell therapy) has been approved by the United States Food and Drug Administration (FDA) as KYMRIAH by Novartis and YESCARTA by Gilead/Kite pharma in the year 2017. A chimeric receptor is composed of an extracellular antigen recognition site along with some co-stimulating and signalling domains. On the whole, it turns out to be one of the most potent receptors on T cells targeting a specific type of cancer cell based on its antigenic marker. CD19 CAR T-cell therapy is the first clinically approved therapy for lymphoma with remarkable results in complete remission of B cell lymphoblastic leukemia up to 90%. The high rate of effectiveness of the CAR T-cell therapy against B-ALL justifies the investigation and application of this therapy for fatal diseases like all types of hematological malignancies. The most critical aspect of chimeric receptor therapy is designing and building an artificial receptor that is specific to a given type of cancer. For this reason, the in silico technique is an appropriate model to investigate the integrity and effectiveness of the engineered chimeric receptor prior to commencing in vitro experiments followed by clinical trials. This computerized experimental study aids in predicting the molecular mechanism of chimeric protein and how it interacts with both ligands. We have anticipated various features of the chimeric protein in terms of qualitative analysis (structure, protein modelling, physiological properties) and functional analysis (antigenicity, allergenicity, its receptor-ligand binding ability, involving signalling pathways). Furthermore, the reliability and validation of the binding mode of the chimeric protein against receptors were performed through a complex molecular dynamics simulation for a 100 ns timeframe in an aqueous environment. The obtained simulation study showed that CD30 was a better approachable marker as compared to CD20 due to its better binding energy score and also binding conformations stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI