Due to the escalating demand for electronic dependability and defense security, there has been a surge in research into broadband and lightweight microwave absorbers. Porous composites that are lightweight and plentiful in interfaces have the potential to be high-performance absorbers due to their ability to attenuate waves in a balanced manner and match impedance. “Using a solvothermal technique we generated FeSe 2 /rGO composites with a porous topology. By varying the weight of rGO, the electromagnetic properties of FeSe 2 /rGO composites may be finely tuned. Impedance matching and attenuation capability are both improved as a direct result of the porous structure and the appropriate electromagnetic parameters. FeSe 2 /rGO composites benefit from the tunable composition, porous structure, and strong synergistic effect between FeSe 2 and rGO sheets and display outstanding microwave absorption performance with an ultrabroad bandwidth approaching 5.2 GHz with a thin thickness of 1.6 mm which covers 75% of the studied frequency range. At the same thickness, a significant reflection loss of −43.7 dB is attained. This work not only enables the tuning of electromagnetic parameters but also expands the use of high-performance microwave absorption devices. Remarkable microwave absorption ability, of the porous composites FeSe 2 /rGO can be utilized as a high-performance microwave absorber.”