Performance analysis of a vertical axis wind turbine using computational fluid dynamics

垂直轴风力涡轮机 失速(流体力学) 定子 空气动力学 涡轮机 风力发电 扭矩 海洋工程 计算流体力学 纵轴 风速 转子(电动) 航空航天工程 工程类 环境科学 机械工程 气象学 物理 电气工程 工程制图 热力学
作者
Tabbi Wilberforce,Abed Alaswad
出处
期刊:Energy [Elsevier]
卷期号:263: 125892-125892 被引量:9
标识
DOI:10.1016/j.energy.2022.125892
摘要

Vertical axis wind turbines (VAWTs) have gained popularity in the last few decades due to their numerous advantages when deployed in urban areas. Despite this, Vertical axis wind turbines have complex aerodynamics, dynamic stall, hence lower performance. Low/zero starting torque, noise, visual impact, as well as blade safeness are further hurdles when they are fitted into the physical environment. Due to these pertinent issues that comes to play in a vertical axis wind turbine, the current investigation explores an augmented vertical axis wind turbine (AVAWT) having a rotor and a stator. The outcome of the study highlighted the effect of mesh density and the type of turbulence model selected in the determination of the forces being exerted on the blade using computational fluid dynamics. Investigation into the effect of time steps showed lesser effect of this parameter on the performance of the blade computationally. The newly developed augmented turbine blades improved the output power by 1.35 times in comparison to an open rotor. The shape for the conical surface and the stator blade impacted the performance as well. Furthermore, it was deduced that there was higher dynamic stall for scenarios where the tip speed ratios were lower. The study showed the importance of the stator in a vertical axis wind turbine in ensuring that the incoming wind attains some acceleration as well as creating a lower pressure outlet but overall aids in the improvement of the power and torque coefficients by more than 36%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的虔纹完成签到 ,获得积分10
刚刚
1秒前
番茄爱喝粥完成签到,获得积分10
1秒前
CipherSage应助老王爱学习采纳,获得10
1秒前
Fa完成签到,获得积分10
1秒前
2秒前
kira完成签到,获得积分10
3秒前
舒服的茹嫣完成签到,获得积分20
3秒前
Stvn发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
明理的天蓝完成签到,获得积分10
5秒前
咳咳发布了新的文献求助10
5秒前
木叶研完成签到,获得积分10
5秒前
无花果应助通~采纳,获得10
5秒前
6秒前
7秒前
周助发布了新的文献求助10
7秒前
伯赏秋白完成签到,获得积分10
7秒前
慕青应助sunzhiyu233采纳,获得10
7秒前
Sherwin完成签到,获得积分10
7秒前
羽毛完成签到,获得积分20
8秒前
xiongjian发布了新的文献求助10
8秒前
一方通行完成签到 ,获得积分10
8秒前
8秒前
monster0101完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
Stvn完成签到,获得积分20
10秒前
核桃发布了新的文献求助10
10秒前
跳跃的太阳完成签到,获得积分10
11秒前
11秒前
enoot完成签到,获得积分10
11秒前
dalin完成签到,获得积分10
11秒前
YE发布了新的文献求助10
11秒前
buno应助外向的沅采纳,获得10
11秒前
体贴啤酒发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740