Collaborative Defense-GAN for protecting adversarial attacks on classification system

对抗制 计算机科学 深度学习 稳健性(进化) 人工智能 机器学习 深层神经网络 脆弱性(计算) 黑匣子 计算 对抗性机器学习 水准点(测量) 计算机安全 算法 基因 生物化学 化学 地理 大地测量学
作者
Pranpaveen Laykaviriyakul,Ekachai Phaisangittisagul
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 118957-118957 被引量:5
标识
DOI:10.1016/j.eswa.2022.118957
摘要

With rapid progress and significant successes in a wide domain of applications, deep learning has been extensively employed for solving complex problems. However, performance of deep learning has been vulnerable to well-designed samples, called adversarial samples. These samples are carefully designed to deceive the deep learning models without human perception. Therefore, vulnerability to adversarial attacks becomes one of the major concerns in life-critical applications of deep learning. In this paper, a novel approach to counter adversarial samples is proposed to strengthen the robustness of a deep learning model. The strategy is to filter the perturbation noise in adversarial samples prior to prediction. The proposed defense framework is based on DiscoGANs to discover the relation between attacker and defender characteristics. Attacker models are created to generate the adversarial samples from the training data, while the defender model is trained to reconstruct original samples from the adversarial samples. These two frameworks are trained to compete with each other in an alternating manner. The experimental results on different attack models are compared with popular defense mechanisms on three benchmark datasets. Our proposed method shows promising results and can improve the robustness on both white-box and black-box attacks including the computation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
起朱楼完成签到,获得积分10
1秒前
章鱼完成签到,获得积分10
1秒前
1秒前
1秒前
小二郎应助Devon采纳,获得10
3秒前
汪金完成签到,获得积分10
3秒前
3秒前
3秒前
kira发布了新的文献求助10
3秒前
小青椒应助躞蹀采纳,获得30
3秒前
独孤刘完成签到,获得积分10
4秒前
JamesPei应助害羞山晴采纳,获得10
4秒前
5秒前
LI完成签到,获得积分10
5秒前
5秒前
5秒前
weiweiwu12完成签到,获得积分10
6秒前
ssjsjn发布了新的文献求助10
6秒前
6秒前
Lily完成签到,获得积分10
6秒前
clxgene发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
一叶知秋完成签到,获得积分10
8秒前
8秒前
兮槿发布了新的文献求助10
8秒前
8秒前
轻松傲薇完成签到,获得积分10
9秒前
活力菠萝发布了新的文献求助10
9秒前
xiuwen发布了新的文献求助10
10秒前
10秒前
勿明发布了新的文献求助10
11秒前
11秒前
贝林7发布了新的文献求助10
11秒前
苗佳威发布了新的文献求助10
12秒前
COA-ACP完成签到,获得积分10
12秒前
chenmin关注了科研通微信公众号
13秒前
远_09完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352537
求助须知:如何正确求助?哪些是违规求助? 4485363
关于积分的说明 13962944
捐赠科研通 4385316
什么是DOI,文献DOI怎么找? 2409378
邀请新用户注册赠送积分活动 1401795
关于科研通互助平台的介绍 1375406