Collaborative Defense-GAN for protecting adversarial attacks on classification system

对抗制 计算机科学 深度学习 稳健性(进化) 人工智能 机器学习 深层神经网络 脆弱性(计算) 黑匣子 计算 对抗性机器学习 水准点(测量) 计算机安全 算法 基因 生物化学 化学 地理 大地测量学
作者
Pranpaveen Laykaviriyakul,Ekachai Phaisangittisagul
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 118957-118957 被引量:5
标识
DOI:10.1016/j.eswa.2022.118957
摘要

With rapid progress and significant successes in a wide domain of applications, deep learning has been extensively employed for solving complex problems. However, performance of deep learning has been vulnerable to well-designed samples, called adversarial samples. These samples are carefully designed to deceive the deep learning models without human perception. Therefore, vulnerability to adversarial attacks becomes one of the major concerns in life-critical applications of deep learning. In this paper, a novel approach to counter adversarial samples is proposed to strengthen the robustness of a deep learning model. The strategy is to filter the perturbation noise in adversarial samples prior to prediction. The proposed defense framework is based on DiscoGANs to discover the relation between attacker and defender characteristics. Attacker models are created to generate the adversarial samples from the training data, while the defender model is trained to reconstruct original samples from the adversarial samples. These two frameworks are trained to compete with each other in an alternating manner. The experimental results on different attack models are compared with popular defense mechanisms on three benchmark datasets. Our proposed method shows promising results and can improve the robustness on both white-box and black-box attacks including the computation time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简简单单完成签到,获得积分10
1秒前
丘比特应助琉琉硫采纳,获得10
2秒前
森森发布了新的文献求助10
3秒前
lsh完成签到,获得积分10
4秒前
li完成签到 ,获得积分10
5秒前
kjingknk完成签到 ,获得积分10
5秒前
6秒前
you发布了新的文献求助10
7秒前
ding7862完成签到,获得积分10
7秒前
FashionBoy应助roro熊采纳,获得10
7秒前
JamesPei应助龙江游侠采纳,获得10
8秒前
8秒前
9秒前
12秒前
英俊延恶发布了新的文献求助30
12秒前
洪山老狗完成签到,获得积分10
12秒前
lh961129发布了新的文献求助10
13秒前
覃小冬发布了新的文献求助10
13秒前
壮观的哈密瓜完成签到,获得积分10
14秒前
科目三应助森森采纳,获得10
15秒前
漠池完成签到,获得积分10
16秒前
roro熊发布了新的文献求助10
18秒前
龙江游侠完成签到,获得积分10
19秒前
19秒前
enen完成签到,获得积分10
19秒前
19秒前
肥仔龙完成签到,获得积分10
20秒前
刘振坤完成签到,获得积分10
20秒前
龙江游侠发布了新的文献求助10
22秒前
萧雨墨发布了新的文献求助10
24秒前
激动的爆米花关注了科研通微信公众号
24秒前
cy发布了新的文献求助10
24秒前
Lucas应助香菜芋头采纳,获得10
24秒前
24秒前
风清扬发布了新的文献求助30
25秒前
隐形曼青应助jason采纳,获得30
26秒前
AJY完成签到,获得积分10
27秒前
aaaaaa发布了新的文献求助10
28秒前
30秒前
传奇3应助AJY采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565531
求助须知:如何正确求助?哪些是违规求助? 4650613
关于积分的说明 14691991
捐赠科研通 4592552
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492065
关于科研通互助平台的介绍 1463281