Collaborative Defense-GAN for protecting adversarial attacks on classification system

对抗制 计算机科学 深度学习 稳健性(进化) 人工智能 机器学习 深层神经网络 脆弱性(计算) 黑匣子 计算 对抗性机器学习 水准点(测量) 计算机安全 算法 基因 生物化学 化学 地理 大地测量学
作者
Pranpaveen Laykaviriyakul,Ekachai Phaisangittisagul
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 118957-118957 被引量:5
标识
DOI:10.1016/j.eswa.2022.118957
摘要

With rapid progress and significant successes in a wide domain of applications, deep learning has been extensively employed for solving complex problems. However, performance of deep learning has been vulnerable to well-designed samples, called adversarial samples. These samples are carefully designed to deceive the deep learning models without human perception. Therefore, vulnerability to adversarial attacks becomes one of the major concerns in life-critical applications of deep learning. In this paper, a novel approach to counter adversarial samples is proposed to strengthen the robustness of a deep learning model. The strategy is to filter the perturbation noise in adversarial samples prior to prediction. The proposed defense framework is based on DiscoGANs to discover the relation between attacker and defender characteristics. Attacker models are created to generate the adversarial samples from the training data, while the defender model is trained to reconstruct original samples from the adversarial samples. These two frameworks are trained to compete with each other in an alternating manner. The experimental results on different attack models are compared with popular defense mechanisms on three benchmark datasets. Our proposed method shows promising results and can improve the robustness on both white-box and black-box attacks including the computation time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助lk采纳,获得10
1秒前
TGM_Hedwig完成签到,获得积分10
1秒前
2秒前
猪猪hero发布了新的文献求助30
2秒前
一叶扁舟发布了新的文献求助10
3秒前
刺猬发布了新的文献求助10
3秒前
qgyj发布了新的文献求助10
4秒前
无极微光应助老闭比基尼采纳,获得20
4秒前
Yolo发布了新的文献求助10
4秒前
123lx发布了新的文献求助10
4秒前
4秒前
5秒前
充电宝应助行云岛采纳,获得10
5秒前
桐桐应助尺素寸心采纳,获得10
6秒前
瑞_完成签到,获得积分10
6秒前
6秒前
菜菜发布了新的文献求助30
7秒前
BDH发布了新的文献求助10
7秒前
ppf发布了新的文献求助10
7秒前
Gaojinyun发布了新的文献求助30
7秒前
方知发布了新的文献求助30
8秒前
林珍完成签到,获得积分10
8秒前
8秒前
小吕完成签到,获得积分10
10秒前
qgyj完成签到,获得积分10
10秒前
丘比特应助Jes采纳,获得30
11秒前
田様应助香菜头采纳,获得10
11秒前
情怀应助皮咻采纳,获得10
11秒前
12秒前
12秒前
QX发布了新的文献求助10
13秒前
含蓄半邪完成签到,获得积分10
13秒前
13秒前
烟花应助一叶扁舟采纳,获得10
14秒前
xzy998应助cij123采纳,获得10
14秒前
14秒前
科研通AI2S应助自然的雁蓉采纳,获得20
15秒前
含蓄半邪发布了新的文献求助10
16秒前
尺素寸心发布了新的文献求助10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715