A novel CNN ensemble framework for bearing surface defects classification based on transfer learning

学习迁移 计算机科学 人工智能 卷积神经网络 深度学习 机器学习 集成学习 模式识别(心理学) 特征(语言学) 特征提取 方位(导航) 哲学 语言学
作者
Jiajun Ma,Maolin Liu,Songyu Hu,Jianzhong Fu,Gui Chen,Aixi Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (2): 025902-025902 被引量:10
标识
DOI:10.1088/1361-6501/ac9c22
摘要

Abstract Bearing surface defect detection and classification methods based on machine vision have been widely used in bearing quality inspection due to their high-speed, high-precision, and non-contact advantages. However, traditional machine vision algorithms have low reusability and their development processes are often expensive and time consuming. Several deep learning-based bearing surface defect detection methods have been proposed. However, these deep learning models often require a large number of datasets, which is often difficult to achieve in the actual industry. Transfer learning provides a promising solution to the small sample difficulties associated with deep learning. However, the complexity of the illumination conditions and the huge differences between bearing dataset and ImageNet dataset make it impossible to use the current single model-based transfer learning for bearing defect detection. In this study, we propose a novel transitive transfer learning convolutional neural network (CNN) ensemble framework for classifying bearing surface defects. Only small-scale datasets are needed in this framework. A transfer path and transfer method selection strategy for transitive transfer learning is then proposed to train the deep learning models, which enhances the feature extraction ability of the CNN models on the basis of multiple illuminations. Ablation experiments are conducted to verify the effectiveness of the proposed method. Experimental results show that the proposed transitive transfer learning CNN ensemble framework has the accuracy rate of 97.51%. The average time for detecting each bearing is 155 ms, which can meet the requirements of industrial online detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liang发布了新的文献求助10
1秒前
1秒前
笨笨千亦完成签到 ,获得积分10
2秒前
111完成签到,获得积分10
2秒前
2秒前
2秒前
一亿完成签到,获得积分10
3秒前
江子川发布了新的文献求助200
4秒前
4秒前
6秒前
7秒前
kento应助yunjian1583采纳,获得100
7秒前
8秒前
wanci应助飞天817采纳,获得10
9秒前
zky17715002完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助sbmanishi采纳,获得10
11秒前
12秒前
Frank完成签到 ,获得积分10
12秒前
迷人素发布了新的文献求助10
12秒前
曲聋五发布了新的文献求助10
13秒前
标致溪流完成签到,获得积分10
15秒前
伊倾发布了新的文献求助10
15秒前
ccm应助Liang采纳,获得10
16秒前
Ava应助Liang采纳,获得10
16秒前
共享精神应助YOOO采纳,获得10
16秒前
舒心新儿发布了新的文献求助10
17秒前
孝顺的雁芙完成签到,获得积分10
17秒前
研友_VZG7GZ应助Zdu采纳,获得20
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
云木完成签到 ,获得积分10
18秒前
竹筏过海应助科研通管家采纳,获得30
18秒前
Ava应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
星星完成签到,获得积分10
19秒前
迷人素完成签到,获得积分10
19秒前
20秒前
沉默安波发布了新的文献求助10
20秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142206
求助须知:如何正确求助?哪些是违规求助? 2793191
关于积分的说明 7805737
捐赠科研通 2449467
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626821
版权声明 601291