材料科学
聚醚酰亚胺
电介质
聚合物
有机半导体
复合材料
半导体
光电子学
作者
Bin Zhang,Xiao‐Ming Chen,Zhe Pan,Peng Liu,Minmin Mao,Kaixin Song,Zhu Mao,Rong Sun,Dawei Wang,Shujun Zhang
标识
DOI:10.1002/adfm.202210050
摘要
Abstract High‐temperature dielectric polymers are in constant demand for the multitude of high‐power electronic devices employed in hybrid vehicles, grid‐connected photovoltaic and wind power generation, to name a few. There is still a lack, however, of dielectric polymers that can work at high temperature (> 150 °C). Herein, a series of all‐organic dielectric polymer composites have been fabricated by blending the n‐type molecular semiconductor 1,4,5,8‐naphthalenetetracarboxylic dianhydride (NTCDA) with polyetherimide (PEI). Electron traps are created by the introduction of trace amounts of n‐type small molecule semiconductor NTCDA into PEI, which effectively reduces the leakage current and improves the breakdown strength and energy storage properties of the composite at high temperature. Especially, excellent energy storage performance is achieved in 0.5 vol.% NTCDA/PEI at the high temperatures of 150 and 200 °C, e.g., ultrahigh discharge energy density of 5.1 J cm −3 at 150 °C and 3.2 J cm −3 at 200 °C with high discharge efficiency of 85–90%, which is superior to its state‐of‐the‐art counterparts. This study provides a facile and effective strategy for the design of high‐temperature dielectric polymers for advanced electronic and electrical systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI