BANet: Small and multi-object detection with a bidirectional attention network for traffic scenes

计算机科学 帕斯卡(单位) 增采样 人工智能 目标检测 数据挖掘 模式识别(心理学) 图像(数学) 程序设计语言
作者
Shengye Wang,Zhong Qu,Cui‐Jin Li,Le-yuan Gao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105504-105504 被引量:35
标识
DOI:10.1016/j.engappai.2022.105504
摘要

Improving the detection accuracy and speed for small and multi-object detection is a hot issue in traffic environments. Despite the substantial advances in object detection algorithms based on deep neural networks, addressing the inaccuracy and low efficiency of small and multi-object detection remains challenging. In this paper, we propose a bidirectional attention network called BANet, which includes multichannel attention (MCA) blocks, alpha-effective intersection-over-union (α-EIoU) loss, and a multiple attention fusion (MAF) module. Each MCA block consists of low-layer, medium-layer, and high-layer features to provide rich base information for feature fusion at the neck module. We introduce MAF to alleviate the spatial location loss and poor semantic performance resulting from the continuous downsampling of the path aggregation feature pyramid network (PAFPNet). Finally, α-EIoU is our regression loss module, which calculates the difference between the predicted box and the ground truth (gt) box. Our study further demonstrates that these strategies yield significant improvements in performance over some existing YOLO detectors. Compared with the performance of YOLOX, BANet demonstrates 0.39%–0.52% [email protected] improvement on the PASCAL VOC 2007 (VOC 07) dataset and 0.55%–2.93% [email protected] improvement on the PASCAL VOC 2012 (VOC 12) dataset. Additionally, 0.3%–1.01% improvement in the [email protected] is achieved on the MS COCO 2017 (COCO 17) dataset, indicating that BANet has a significant effect on multi-object detection. Experiments to determine the approximate number of parameters with YOLOX, show that our strategy not only improves by 7.5 frames per second (FPS) but also reduces the Average forward time by 0.97 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
himes发布了新的文献求助10
1秒前
小白应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
爆米花应助醉生梦死采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
3秒前
香蕉觅云应助Severan采纳,获得10
4秒前
科研通AI2S应助Jim采纳,获得10
4秒前
kawayifenm完成签到,获得积分10
6秒前
himes完成签到,获得积分20
8秒前
科研通AI2S应助惊蛰采纳,获得10
8秒前
笑点低梦露完成签到,获得积分10
9秒前
9秒前
12秒前
14秒前
ccm发布了新的文献求助10
16秒前
16秒前
落后访风完成签到,获得积分10
17秒前
pp1230完成签到,获得积分10
17秒前
17秒前
18秒前
安安安发布了新的文献求助10
18秒前
孝顺的丹寒完成签到,获得积分10
19秒前
CipherSage应助弹剑作歌采纳,获得10
19秒前
20秒前
不配.应助vinni采纳,获得20
22秒前
刘老哥6发布了新的文献求助10
22秒前
Hu发布了新的文献求助10
22秒前
见鹰完成签到,获得积分10
23秒前
esyncoms发布了新的文献求助10
23秒前
郭杰完成签到,获得积分10
23秒前
树阴照水完成签到,获得积分10
25秒前
田様应助王喂喂哦啊嗯采纳,获得10
25秒前
boss发布了新的文献求助100
27秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270931
求助须知:如何正确求助?哪些是违规求助? 2910251
关于积分的说明 8353197
捐赠科研通 2580762
什么是DOI,文献DOI怎么找? 1403704
科研通“疑难数据库(出版商)”最低求助积分说明 655921
邀请新用户注册赠送积分活动 635279