BANet: Small and multi-object detection with a bidirectional attention network for traffic scenes

计算机科学 帕斯卡(单位) 增采样 人工智能 目标检测 数据挖掘 模式识别(心理学) 图像(数学) 程序设计语言
作者
Shengye Wang,Zhong Qu,Cui‐Jin Li,Le-yuan Gao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105504-105504 被引量:35
标识
DOI:10.1016/j.engappai.2022.105504
摘要

Improving the detection accuracy and speed for small and multi-object detection is a hot issue in traffic environments. Despite the substantial advances in object detection algorithms based on deep neural networks, addressing the inaccuracy and low efficiency of small and multi-object detection remains challenging. In this paper, we propose a bidirectional attention network called BANet, which includes multichannel attention (MCA) blocks, alpha-effective intersection-over-union (α-EIoU) loss, and a multiple attention fusion (MAF) module. Each MCA block consists of low-layer, medium-layer, and high-layer features to provide rich base information for feature fusion at the neck module. We introduce MAF to alleviate the spatial location loss and poor semantic performance resulting from the continuous downsampling of the path aggregation feature pyramid network (PAFPNet). Finally, α-EIoU is our regression loss module, which calculates the difference between the predicted box and the ground truth (gt) box. Our study further demonstrates that these strategies yield significant improvements in performance over some existing YOLO detectors. Compared with the performance of YOLOX, BANet demonstrates 0.39%–0.52% [email protected] improvement on the PASCAL VOC 2007 (VOC 07) dataset and 0.55%–2.93% [email protected] improvement on the PASCAL VOC 2012 (VOC 12) dataset. Additionally, 0.3%–1.01% improvement in the [email protected] is achieved on the MS COCO 2017 (COCO 17) dataset, indicating that BANet has a significant effect on multi-object detection. Experiments to determine the approximate number of parameters with YOLOX, show that our strategy not only improves by 7.5 frames per second (FPS) but also reduces the Average forward time by 0.97 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无私的芹应助王弈轩采纳,获得10
2秒前
沈嘀嘀发布了新的文献求助10
4秒前
x111发布了新的文献求助10
5秒前
aventurine完成签到,获得积分10
6秒前
传奇3应助贰拾采纳,获得10
7秒前
8秒前
大笨笨发布了新的文献求助10
9秒前
11秒前
香蕉觅云应助花痴的梦竹采纳,获得30
11秒前
junia发布了新的文献求助30
11秒前
garrett发布了新的文献求助10
16秒前
16秒前
111完成签到 ,获得积分10
16秒前
大笨笨完成签到,获得积分10
17秒前
小新完成签到 ,获得积分10
17秒前
Lucas应助rudjs采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得100
18秒前
Owen应助科研通管家采纳,获得10
18秒前
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
Orange应助科研通管家采纳,获得10
18秒前
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
Akim应助木木采纳,获得10
19秒前
20秒前
21秒前
x111完成签到,获得积分20
21秒前
22秒前
时刻保持质疑应助小龙龙采纳,获得10
23秒前
jiaxingsun发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953182
求助须知:如何正确求助?哪些是违规求助? 3498499
关于积分的说明 11092349
捐赠科研通 3229100
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869286
科研通“疑难数据库(出版商)”最低求助积分说明 801415