Siamese multiscale residual feature fusion network for aero-engine bearing fault diagnosis under small-sample condition

断层(地质) 残余物 计算机科学 模式识别(心理学) 样品(材料) 方位(导航) 特征(语言学) 数据挖掘 人工智能 人工神经网络 特征提取 算法 地质学 语言学 化学 哲学 色谱法 地震学
作者
Zhaoguo Hou,Huawei Wang,Shaolan Lv,Minglan Xiong,Ke Peng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (3): 035109-035109 被引量:13
标识
DOI:10.1088/1361-6501/aca044
摘要

Abstract Implementing condition monitoring and fault diagnosis of aero-engine bearings is crucial to ensure that aircraft operate safely and reliably. In engineering practice, the fault data for aero-engine bearings are extremely limited. However, the traditional fault diagnosis methods have two shortcomings under extremely small sample conditions: (1) they have limited diagnostic performance and generalization ability, and (2) they do not mine fault information sufficiently or efficiently. This article proposes a Siamese multiscale residual feature fusion network (SMSRFFN) for aero-engine bearing fault diagnosis under small-sample conditions to overcome the weaknesses above. In the proposed SMSRFFN, the training samples are first paired according to the matching rules to realize the expansion of the sample size. Second, a multiscale residual feature extraction network (MSRFEN) is constructed to excavate the fault features of different scales and speed up the convergence speed of the network. Then, a multiscale attention mechanism feature fusion module (MSAMFFM) is designed to achieve efficient fusion of fault features at different scales. Finally, the distance of the input sample is measured based on the fused deep feature representation to identify the fault state of the aero-engine bearing. The proposed SMSRFFN is evaluated using three bearing fault data and also compared with some state-of-the-art small-sample diagnostic methods. The experimental results demonstrate the effectiveness and superiority of the proposed SMSRFFN in mining fault information and improving diagnosis accuracy under extremely small sample conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多情道之发布了新的文献求助10
刚刚
刚刚
张国麒发布了新的文献求助10
2秒前
ruter完成签到,获得积分0
3秒前
dmoney发布了新的文献求助10
3秒前
4秒前
怜梦发布了新的文献求助10
4秒前
慕青应助独特的高山采纳,获得10
4秒前
4秒前
nasdss发布了新的文献求助10
5秒前
Zerone01001完成签到,获得积分10
5秒前
5秒前
杨杨发布了新的文献求助10
7秒前
十一应助Doughnut采纳,获得10
7秒前
7秒前
荀语山发布了新的文献求助10
7秒前
9秒前
无花果应助王哪跑12采纳,获得10
10秒前
10秒前
李健应助一叶知秋采纳,获得10
10秒前
dddd发布了新的文献求助10
10秒前
iNk应助dmoney采纳,获得10
11秒前
开心之王发布了新的文献求助10
12秒前
CodeCraft应助木头人采纳,获得10
12秒前
12秒前
13秒前
啊啊啊发布了新的文献求助10
13秒前
快哒哒哒发布了新的文献求助10
16秒前
希望天下0贩的0应助ddd采纳,获得10
16秒前
17秒前
17秒前
19秒前
dddd完成签到,获得积分10
19秒前
芝士拌麦粒完成签到,获得积分10
20秒前
21秒前
OvO发布了新的文献求助10
22秒前
陌上花开发布了新的文献求助10
23秒前
zywii完成签到,获得积分10
24秒前
26秒前
头发乱了发布了新的文献求助10
27秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462763
求助须知:如何正确求助?哪些是违规求助? 3056257
关于积分的说明 9051348
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506717
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720