GS-InGAT: An interaction graph attention network with global semantic for knowledge graph completion

计算机科学 图形 理论计算机科学 注意力网络 嵌入 知识图 水准点(测量) 人工智能 大地测量学 地理
作者
Hong Yin,Jiang Zhong,Chen Wang,Rongzhen Li,Xue Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:228: 120380-120380 被引量:13
标识
DOI:10.1016/j.eswa.2023.120380
摘要

Knowledge graph completion (KGC) aims to infer missing links between entities based on the observed ones. Current KGC methods primarily focus on KG embedding models, which project entities and relations as low-dimensional vectors. Recently, the combination of textual information with graph neural network models has drawn extensive attention due to their superiority in utilizing topological structures, benefiting from the message passing mechanism, and their effectiveness in supplementing structural information. Nevertheless, previous methods suffer from the following two limitations. First, they always treat the textual information as an independent instance to enhance the corresponding entities, without considering the global semantic within the KG. Second, Graph Neural Networks (GNNs) typically assume that the neighbors of a node are independent of each other, ignoring the possible interactions between them. To eliminate these limitations, we creatively propose a KGC method called GS-InGAT (Interaction Graph ATtention Network with Global Semantic). Concretely, we utilize a semantic graph to model the semantic relationships and obtain the global semantic representations for entities based on it. Furthermore, we introduce an efficient Interaction Graph ATtention network (InGAT) that can simultaneously capture both the interaction and local information of entities, which can be fused to generate structural representations. Finally, we feed the combination of the semantic and structural representations, along with relation representations, into the decoder to score triples. Experimental results demonstrate that the GS-InGAT consistently attains comparable performance on benchmark datasets, verifying the effectiveness of considering the global semantic and interactions between neighbors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LX02xL发布了新的文献求助10
刚刚
1秒前
诗和远方的,完成签到,获得积分10
1秒前
刘星宇发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助17采纳,获得10
5秒前
谦让夜香发布了新的文献求助10
5秒前
Zhao完成签到,获得积分20
6秒前
6秒前
欠虐宝宝发布了新的文献求助10
6秒前
妙狸发布了新的文献求助10
7秒前
好烦呀发布了新的文献求助10
7秒前
8秒前
LULU完成签到,获得积分10
8秒前
自然秋柳发布了新的文献求助10
11秒前
100完成签到,获得积分10
12秒前
Dudu发布了新的文献求助10
12秒前
科研通AI2S应助二三采纳,获得10
13秒前
hkjing发布了新的文献求助10
17秒前
Akim应助菠菜采纳,获得100
18秒前
华仔应助丰富的小白菜采纳,获得10
19秒前
22秒前
23秒前
科目三应助Dudu采纳,获得30
24秒前
仁爱听露完成签到 ,获得积分10
24秒前
25秒前
28秒前
杨杨完成签到 ,获得积分10
28秒前
YY发布了新的文献求助10
29秒前
xuanyu应助费费采纳,获得30
29秒前
英俊的铭应助淡定小白菜采纳,获得10
29秒前
玉玉发布了新的文献求助10
30秒前
青椒超人关注了科研通微信公众号
30秒前
小殷发布了新的文献求助10
32秒前
刘星宇完成签到,获得积分10
34秒前
倩倩完成签到 ,获得积分10
34秒前
Ava应助小殷采纳,获得10
34秒前
科研雪瑞发布了新的文献求助10
35秒前
格拉希尔完成签到,获得积分10
36秒前
36秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055748
求助须知:如何正确求助?哪些是违规求助? 2712398
关于积分的说明 7431409
捐赠科研通 2357400
什么是DOI,文献DOI怎么找? 1248780
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596163