Dynamic-self-catalysis as an accelerated air-cathode for rechargeable near-neutral Zn–air batteries with ultrahigh energy efficiency

电催化剂 电解质 阴极 析氧 催化作用 材料科学 电池(电) 氧气 氧化还原 电极 化学工程 无机化学 电化学 化学 有机化学 物理化学 工程类 冶金 量子力学 物理 功率(物理)
作者
Tianran Zhang,Xiao Feng Lim,Shengliang Zhang,Jian Zheng,Xiangfeng Liu,Jim Yang Lee
出处
期刊:Materials horizons [The Royal Society of Chemistry]
卷期号:10 (8): 2958-2967 被引量:2
标识
DOI:10.1039/d3mh00079f
摘要

Neutral/near-neutral electrolyte rechargeable zinc-air batteries (NN-ZABs) with long cycling lifetime are an evolutionary design of the conventional alkaline ZABs, but the extremely sluggish kinetics of oxygen electrocatalysis in mild pH solutions in the air-cathode has notably affected the energy efficiency of the NN-ZABs. Herein, we present a dynamic self-catalysis as the air-cathode chemistry to boost the energy efficiency of NN-ZABs, which is based on in situ reversible generation of highly active electrocatalysts from the electrolyte during the discharge and charge operations of ZABs, respectively. Two reversible redox reactions of Cu(I)/Cu(II) and Mn(II)/Mn(IV) in the NH4Cl-ZnCl2-based electrolyte are integrated with oxygen electrocatalysis in the air-cathode to in situ generate Cu(I)-O-Cl deposits during discharging and Cu-MnO2 deposits during charging, which directly catalyze the subsequent oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively. The in situ generated electrocatalysts deliver good oxygen electrocatalytic activities due to their distinctive surface structures and can be dissolved by potential reversal in a subsequent battery operation. The NN-ZAB designed as such delivers a record-high energy efficiency of 69.0% and a cycling life of 1800 h with an areal capacity of 10 mA h cm-2, surpassing the performances of NN-ZABs with preloaded electrocatalysts reported to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然幻柏完成签到,获得积分10
1秒前
1秒前
1秒前
5秒前
田様应助Hyacinth采纳,获得10
6秒前
鱼咬羊发布了新的文献求助10
6秒前
7秒前
ddddd发布了新的文献求助10
7秒前
8秒前
10秒前
10秒前
慕青应助绝命迈克尔采纳,获得10
11秒前
研友_LJQXK8发布了新的文献求助50
12秒前
12秒前
13秒前
14秒前
鱼咬羊完成签到,获得积分10
14秒前
JayChou发布了新的文献求助10
15秒前
菲克ovo完成签到,获得积分10
15秒前
16秒前
酷波er应助RACHEL采纳,获得10
17秒前
biubiu发布了新的文献求助10
17秒前
明白那就发布了新的文献求助10
17秒前
小溜溜完成签到,获得积分10
17秒前
充电宝应助薛定谔的猫采纳,获得10
17秒前
咔滋完成签到,获得积分10
18秒前
巴山郎发布了新的文献求助30
20秒前
20秒前
22秒前
22秒前
22秒前
淡然幻柏给淡然幻柏的求助进行了留言
23秒前
风衣拖地完成签到 ,获得积分10
23秒前
嘟嘟发布了新的文献求助10
26秒前
福荔发布了新的文献求助10
26秒前
易清华完成签到 ,获得积分10
26秒前
听风完成签到,获得积分10
27秒前
安详初之发布了新的文献求助10
27秒前
MSYzack发布了新的文献求助10
27秒前
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255