Advancing Characterization and Modeling of Space-Time Correlation Structure and Marginal Distribution of Short-Duration Precipitation

降水 边际分布 空间相关性 环境科学 蒙特卡罗方法 大气科学 雷雨 气候学 统计 气象学 数学 地质学 物理 随机变量
作者
Giuseppe Mascaro,Simon Michael Papalexiou,Daniel B. Wright
出处
期刊:Advances in Water Resources [Elsevier BV]
卷期号:177: 104451-104451 被引量:2
标识
DOI:10.1016/j.advwatres.2023.104451
摘要

The statistical characterization of precipitation (P) at short durations (≤ 24 h) is crucial for practical and scientific applications. Here, we advance the knowledge of and ability to model the space-time correlation structure (STCS) and marginal distribution of short-duration P using a network of rain gages in central Arizona with one of the largest densities and spatial coverages in the world. We separately analyze summer and winter P sampled at multiple durations, Δt, from 0.5 to 24 h. We first identify an analytical model and a three-parameter distribution that robustly capture the empirical STCS and marginal distribution of P, respectively, across Δt's. We then conduct Monte Carlo experiments consisting of multisite stochastic simulations of P time series to explore the spatial and seasonal variability of these properties. Significant seasonal differences emerge, especially at low Δt. Summer (winter) P exhibits weak (strong) correlation structure and heavy- (light-)tailed distributions resulting from short-lived, isolated thunderstorms (widespread, long-lasting frontal systems). The STCS of P is most likely homogeneous and isotropic except for winter at Δt ≥ 3 h, where anisotropy could be introduced via the motion of frontal storms. The spatial variability of the marginal distribution is reproduced by a regional parameterization dependent on elevation in all cases except, again, for winter at Δt ≥ 3 h where additional factors are needed to explain the variability of the mean P intensity. This work provides insights to improve stochastic P models and validate convection-permitting models used to investigate the mechanisms driving changes in short-duration P.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Xiaoxiao应助读书明智采纳,获得10
1秒前
搬砖旭发布了新的文献求助10
1秒前
1秒前
科目三应助幻烨烨采纳,获得10
3秒前
3秒前
bancheng发布了新的文献求助10
5秒前
研友_LJGoXn发布了新的文献求助10
5秒前
拔了晴天的向日葵完成签到,获得积分10
5秒前
7秒前
爱科研的小虞完成签到 ,获得积分10
7秒前
7秒前
8秒前
魔幻的乞发布了新的文献求助10
9秒前
呆萌路灯完成签到,获得积分10
9秒前
追忆完成签到,获得积分10
10秒前
美好的黛丝完成签到,获得积分10
11秒前
xzy998应助大块采纳,获得10
11秒前
思源应助bancheng采纳,获得10
11秒前
追风筝的人完成签到,获得积分20
11秒前
多和5的武器完成签到,获得积分10
12秒前
zoe完成签到 ,获得积分10
12秒前
Summer完成签到,获得积分10
14秒前
15秒前
15秒前
kl完成签到 ,获得积分10
16秒前
16秒前
完美的友蕊应助anthea采纳,获得10
17秒前
慕青应助DrWang采纳,获得10
17秒前
18秒前
茅十八完成签到,获得积分10
18秒前
子非鱼发布了新的文献求助10
20秒前
kyt完成签到,获得积分10
20秒前
故事的小红花完成签到,获得积分10
21秒前
wzz完成签到,获得积分10
21秒前
隐形曼青应助欧欧欧导采纳,获得10
22秒前
大个应助蒋依伶采纳,获得10
23秒前
刘源完成签到 ,获得积分10
23秒前
yznfly应助FYF采纳,获得20
23秒前
yznfly应助FYF采纳,获得20
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966045
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157819
捐赠科研通 3245924
什么是DOI,文献DOI怎么找? 1793233
邀请新用户注册赠送积分活动 874278
科研通“疑难数据库(出版商)”最低求助积分说明 804304