电催化剂
材料科学
纳米颗粒
拉伤
纳米材料
同步加速器
化学物理
纳米技术
电化学
应变工程
催化作用
纳米材料基催化剂
同步辐射
相(物质)
化学工程
电极
化学
光电子学
光学
物理化学
物理
工程类
内科学
医学
有机化学
生物化学
硅
作者
Clément Atlan,Corentin Chatelier,Isaac Martens,Maxime Dupraz,Arnaud Viola,Ni Li,Lu Gao,Steven Leake,Tobias U. Schülli,J. Eymery,Frédéric Maillard,Marie‐Ingrid Richard
出处
期刊:Nature Materials
[Springer Nature]
日期:2023-04-24
卷期号:22 (6): 754-761
被引量:30
标识
DOI:10.1038/s41563-023-01528-x
摘要
Surface strain is widely employed in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites. However, in situ or operando strain measurements are experimentally challenging, especially on nanomaterials. Here we exploit coherent diffraction at the new fourth-generation Extremely Brilliant Source of the European Synchrotron Radiation Facility to map and quantify strain within individual Pt catalyst nanoparticles under electrochemical control. Three-dimensional nanoresolution strain microscopy, together with density functional theory and atomistic simulations, show evidence of heterogeneous and potential-dependent strain distribution between highly coordinated ({100} and {111} facets) and undercoordinated atoms (edges and corners), as well as evidence of strain propagation from the surface to the bulk of the nanoparticle. These dynamic structural relationships directly inform the design of strain-engineered nanocatalysts for energy storage and conversion applications. Surface strain can be used in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites, but in situ or operando strain measurements can be challenging. Coherent diffraction now allows strain inside individual Pt nanoparticles to be mapped and quantified under electrochemical control.
科研通智能强力驱动
Strongly Powered by AbleSci AI