Mapping Immune–Tumor Bidirectional Dialogue Using Ultrasensitive Nanosensors for Accurate Diagnosis of Lung Cancer

肺癌 免疫系统 癌症 肿瘤微环境 医学 癌症研究 免疫学 病理 内科学
作者
Swarna Ganesh,Priya Dharmalingam,Sunit Das,Krishnan Venkatakrishnan,Bo Tan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (9): 8026-8040 被引量:1
标识
DOI:10.1021/acsnano.2c09323
摘要

Lung cancer is one of the most common cancers with high mortality worldwide despite the development of molecularly targeted therapies and immunotherapies. A significant challenge in managing lung cancer is the accurate diagnosis of cancerous lesions owing to the lack of sensitive and specific biomarkers. The current procedure necessitates an invasive tissue biopsy for diagnosis and molecular subtyping, which presents patients with risk, morbidity, anxiety, and high false-positive rates. The high-risk diagnostic approach has highlighted the need to search for a reliable, low-risk noninvasive diagnostic approach to capture lung cancer heterogeneity precisely. The immune interaction profile of lung cancer is driven by immune cells' distinctive, precise interactions with the tumor microenvironment. Here, we hypothesize that immune cells, particularly T cells, can be used for accurate lung cancer diagnosis by exploiting the distinctive immune-tumor interaction by detecting the immune-diagnostic signature. We have developed an ultrasensitive T-sense nanosensor to probe these specific diagnostic signatures using the physical synthesis process of multiphoton ionization. Our research employed predictive in vitro models of lung cancers, cancer-associated T cells (PCAT, MCAT) and CSC-associated T cells (PCSCAT, MCSCAT), from primary and metastatic lung cancer patients to reveal the immune-diagnostic signature and uncover the molecular, functional, and phenotypic separation between patient-derived T cells (PDT) and healthy samples. We demonstrated this by adopting a machine learning model trained with SERS data obtained using cocultured T cells with preclinical models (CAT, CSCAT) of primary (H69AR) and metastatic lung cancer (H1915). Interrogating these distinct signatures with PDT captured the complexity and diversity of the tumor-associated T cell signature across the patient population, exposing the clinical feasibility of immune diagnosis in an independent cohort of patient samples. Thus, our predictive approach using T cells from the patient peripheral blood showed a highly accurate diagnosis with a specificity and sensitivity of 94.1% and 100%, respectively, for primary lung cancer and 97.9% and 94.4% for metastatic lung cancer. Our results prove that the immune-diagnostic signature developed in this study could be used as a clinical technology for cancer diagnosis and determine the course of clinical management with T cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
凹凸先森应助sia采纳,获得20
1秒前
纠纠完成签到,获得积分10
2秒前
cctv18应助瓜皮糖浆采纳,获得10
3秒前
3秒前
车厘子水门汀完成签到 ,获得积分10
5秒前
5秒前
xsq发布了新的文献求助10
6秒前
6秒前
明亮玉米完成签到,获得积分10
6秒前
不配.应助Chen采纳,获得10
7秒前
蛋白完成签到,获得积分10
7秒前
科研通AI2S应助库里采纳,获得10
7秒前
fffgz完成签到 ,获得积分10
7秒前
仁爱无极完成签到,获得积分10
8秒前
Carey发布了新的文献求助10
8秒前
9秒前
心夏完成签到,获得积分10
9秒前
JoyceeZHONG发布了新的文献求助10
9秒前
10秒前
金www发布了新的文献求助10
10秒前
可靠天与发布了新的文献求助30
11秒前
12秒前
lyf关注了科研通微信公众号
12秒前
13秒前
洋洋洋完成签到,获得积分10
14秒前
HEIKU应助Chengsir采纳,获得10
15秒前
库里完成签到,获得积分10
15秒前
16秒前
丰硕完成签到,获得积分10
16秒前
爆米花应助sjdenghao采纳,获得10
16秒前
赘婿应助Sherry采纳,获得10
17秒前
领导范儿应助JiaQi采纳,获得10
17秒前
九千岁完成签到,获得积分10
18秒前
陈y完成签到 ,获得积分10
18秒前
18秒前
20秒前
22秒前
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329002
求助须知:如何正确求助?哪些是违规求助? 2958957
关于积分的说明 8593048
捐赠科研通 2637345
什么是DOI,文献DOI怎么找? 1443453
科研通“疑难数据库(出版商)”最低求助积分说明 668699
邀请新用户注册赠送积分活动 656046