已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Guided Hybrid Quantization for Object Detection in Remote Sensing Imagery via One-to-One Self-Teaching

计算机科学 量化(信号处理) 蒸馏 人工智能 计算 计算机工程 算法 实时计算 有机化学 化学
作者
Jiaqing Zhang,Jie Lei,Weiying Xie,Yunsong Li,Geng Yang,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2023.3293147
摘要

Deep convolutional neural networks (CNNs) have improved remote sensing image analysis, but their high computational demands may limit their deployment on low-end devices with limited resources, such as intelligent satellites and unmanned aerial vehicles. Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), an innovative idea for realizing a lightweight model through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module that automatically acquires the optimal bit-width by imposing a threshold constraint on the distribution distance between the center point and samples in the weight search space, aiming to retain more shallow detail information that is advantageous for small object detection. Third, to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network the ability to self-judgment. A switch control machine (SCM) builds a bridge between the student and teacher networks in the same location to help the teacher reduce wrong guidance and impart vital knowledge about objects without vast background information to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight, or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tumbleweed668发布了新的文献求助10
1秒前
Desperardo发布了新的文献求助10
1秒前
Jamie2完成签到,获得积分10
3秒前
4秒前
迷人的天抒应助Felix采纳,获得10
7秒前
迷人的天抒应助AA采纳,获得10
10秒前
烟花应助YSE采纳,获得10
10秒前
阿Q发布了新的文献求助10
11秒前
lyh完成签到,获得积分10
11秒前
13秒前
Desperardo完成签到,获得积分10
15秒前
村上种树发布了新的文献求助10
19秒前
重要梦之发布了新的文献求助10
20秒前
Jamie完成签到,获得积分10
20秒前
天天快乐应助shinn采纳,获得50
22秒前
科研通AI2S应助沙漠大雕采纳,获得10
22秒前
俺村俺忒帅完成签到,获得积分10
24秒前
MissingParadise完成签到 ,获得积分10
24秒前
怜熙完成签到 ,获得积分10
27秒前
cindyyunjie完成签到,获得积分10
27秒前
迷人的天抒应助yxy303256651采纳,获得10
28秒前
28秒前
Tumbleweed668完成签到,获得积分20
28秒前
29秒前
重要梦之完成签到,获得积分10
30秒前
ding应助Bonnie采纳,获得10
31秒前
32秒前
JCX发布了新的文献求助10
33秒前
liu发布了新的文献求助10
35秒前
大个应助cc采纳,获得10
36秒前
隐形曼青应助笔墨今宵采纳,获得10
36秒前
shinn发布了新的文献求助50
36秒前
37秒前
37秒前
40秒前
小古完成签到,获得积分10
41秒前
41秒前
NX发布了新的文献求助10
42秒前
42秒前
zz发布了新的文献求助30
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968054
求助须知:如何正确求助?哪些是违规求助? 3513070
关于积分的说明 11166367
捐赠科研通 3248263
什么是DOI,文献DOI怎么找? 1794174
邀请新用户注册赠送积分活动 874892
科研通“疑难数据库(出版商)”最低求助积分说明 804629