清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Guided Hybrid Quantization for Object Detection in Remote Sensing Imagery via One-to-One Self-Teaching

计算机科学 量化(信号处理) 蒸馏 人工智能 计算 计算机工程 算法 实时计算 有机化学 化学
作者
Jiaqing Zhang,Jie Lei,Weiying Xie,Yunsong Li,Geng Yang,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2023.3293147
摘要

Deep convolutional neural networks (CNNs) have improved remote sensing image analysis, but their high computational demands may limit their deployment on low-end devices with limited resources, such as intelligent satellites and unmanned aerial vehicles. Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), an innovative idea for realizing a lightweight model through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module that automatically acquires the optimal bit-width by imposing a threshold constraint on the distribution distance between the center point and samples in the weight search space, aiming to retain more shallow detail information that is advantageous for small object detection. Third, to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network the ability to self-judgment. A switch control machine (SCM) builds a bridge between the student and teacher networks in the same location to help the teacher reduce wrong guidance and impart vital knowledge about objects without vast background information to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight, or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷平凡完成签到,获得积分10
6秒前
荔枝发布了新的文献求助10
40秒前
46秒前
连安阳完成签到,获得积分10
53秒前
1分钟前
荔枝发布了新的文献求助10
1分钟前
丁老三完成签到 ,获得积分10
2分钟前
2分钟前
Jim发布了新的文献求助10
3分钟前
3分钟前
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
Unlisted发布了新的文献求助10
3分钟前
落寞的又菡完成签到,获得积分10
3分钟前
4分钟前
端庄洪纲完成签到 ,获得积分10
4分钟前
4分钟前
米修发布了新的文献求助10
5分钟前
5分钟前
米修完成签到,获得积分20
5分钟前
CodeCraft应助居家小可采纳,获得10
5分钟前
5分钟前
苗苗发布了新的文献求助10
6分钟前
6分钟前
苗苗完成签到 ,获得积分10
6分钟前
loathebm发布了新的文献求助10
6分钟前
NexusExplorer应助loathebm采纳,获得10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
7分钟前
7分钟前
居家小可发布了新的文献求助10
7分钟前
我睡觉的时候不困完成签到 ,获得积分10
7分钟前
居家小可完成签到,获得积分10
7分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
7分钟前
如歌完成签到,获得积分10
7分钟前
不羁之魂完成签到,获得积分10
8分钟前
8分钟前
9分钟前
飞快的孱发布了新的文献求助10
9分钟前
CYT完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108