Guided Hybrid Quantization for Object Detection in Remote Sensing Imagery via One-to-One Self-Teaching

计算机科学 量化(信号处理) 蒸馏 人工智能 计算 计算机工程 算法 实时计算 有机化学 化学
作者
Jiaqing Zhang,Jie Lei,Weiying Xie,Yunsong Li,Geng Yang,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2023.3293147
摘要

Deep convolutional neural networks (CNNs) have improved remote sensing image analysis, but their high computational demands may limit their deployment on low-end devices with limited resources, such as intelligent satellites and unmanned aerial vehicles. Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), an innovative idea for realizing a lightweight model through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module that automatically acquires the optimal bit-width by imposing a threshold constraint on the distribution distance between the center point and samples in the weight search space, aiming to retain more shallow detail information that is advantageous for small object detection. Third, to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network the ability to self-judgment. A switch control machine (SCM) builds a bridge between the student and teacher networks in the same location to help the teacher reduce wrong guidance and impart vital knowledge about objects without vast background information to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight, or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无奈梦岚完成签到,获得积分10
刚刚
yug发布了新的文献求助10
刚刚
蒋时晏完成签到,获得积分0
1秒前
JamesPei应助zz采纳,获得10
1秒前
MADKAI发布了新的文献求助10
1秒前
1秒前
脑洞疼应助Leexxxhaoo采纳,获得10
2秒前
2秒前
2秒前
RC_Wang应助东东采纳,获得10
2秒前
大脸妹发布了新的文献求助10
2秒前
两张发布了新的文献求助10
3秒前
3秒前
Akim应助执着的小蘑菇采纳,获得10
3秒前
调研昵称发布了新的文献求助10
3秒前
念念发布了新的文献求助10
4秒前
畅快的鱼发布了新的文献求助10
4秒前
搞怪藏今完成签到 ,获得积分10
5秒前
yu发布了新的文献求助10
5秒前
5秒前
qifa发布了新的文献求助10
5秒前
kingwhitewing完成签到,获得积分10
5秒前
6秒前
WTT发布了新的文献求助10
6秒前
仄兀完成签到,获得积分10
6秒前
四喜完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
Yenom完成签到 ,获得积分10
9秒前
10秒前
10秒前
SciGPT应助浩浩大人采纳,获得10
10秒前
迅速冰岚发布了新的文献求助10
10秒前
10秒前
WTT完成签到,获得积分20
11秒前
11秒前
苹果煎饼发布了新的文献求助10
11秒前
yan发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678