Guided Hybrid Quantization for Object Detection in Remote Sensing Imagery via One-to-One Self-Teaching

计算机科学 量化(信号处理) 蒸馏 人工智能 计算 计算机工程 算法 实时计算 有机化学 化学
作者
Jiaqing Zhang,Jie Lei,Weiying Xie,Yunsong Li,Geng Yang,Xiuping Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2023.3293147
摘要

Deep convolutional neural networks (CNNs) have improved remote sensing image analysis, but their high computational demands may limit their deployment on low-end devices with limited resources, such as intelligent satellites and unmanned aerial vehicles. Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), an innovative idea for realizing a lightweight model through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module that automatically acquires the optimal bit-width by imposing a threshold constraint on the distribution distance between the center point and samples in the weight search space, aiming to retain more shallow detail information that is advantageous for small object detection. Third, to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network the ability to self-judgment. A switch control machine (SCM) builds a bridge between the student and teacher networks in the same location to help the teacher reduce wrong guidance and impart vital knowledge about objects without vast background information to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight, or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容的翼完成签到,获得积分10
刚刚
酷炫的蓝发布了新的文献求助10
1秒前
经竺发布了新的文献求助10
2秒前
经竺发布了新的文献求助10
2秒前
经竺发布了新的文献求助10
2秒前
3秒前
没烦恼发布了新的文献求助10
4秒前
Iso完成签到,获得积分10
5秒前
英姑应助level采纳,获得10
6秒前
JETSTREAM完成签到,获得积分10
6秒前
JamesPei应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
皛皛应助科研通管家采纳,获得10
7秒前
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
带头大哥应助程程采纳,获得50
8秒前
wg发布了新的文献求助10
8秒前
深情安青应助科研通管家采纳,获得30
8秒前
ding应助科研通管家采纳,获得10
8秒前
FashionBoy应助灰灰灰采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
qyhyhn应助科研通管家采纳,获得10
8秒前
8秒前
科目三应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
Billy应助科研通管家采纳,获得30
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
wangdi应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得20
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
allofme发布了新的文献求助10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
缪婷婷应助科研通管家采纳,获得10
9秒前
9秒前
pp1230发布了新的文献求助20
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242080
求助须知:如何正确求助?哪些是违规求助? 2886476
关于积分的说明 8243436
捐赠科研通 2555030
什么是DOI,文献DOI怎么找? 1383219
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625417