Efficient one-off clustering for personalized federated learning

计算机科学 聚类分析 利用 联合学习 一般化 机器学习 计算 星团(航天器) 人工智能 数据挖掘 算法 计算机网络 数学 计算机安全 数学分析
作者
Tingting Liang,Cheng Yuan,Cheng Lu,Youhuizi Li,Junfeng Yuan,Yuyu Yin
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:277: 110813-110813 被引量:4
标识
DOI:10.1016/j.knosys.2023.110813
摘要

In traditional federated learning such as FedAvg, the associations among clients are often ignored when executing on non-independent or heterogeneously distributed datasets, resulting in unsatisfactory accuracy. Although some previous works on clustered federated learning have been proposed to address such problems, most of them have a polarized problem. When the number of clustering is small, the model performs poorly and fails to accurately capture the distinction between clients. While a large number of clustering times tends to lead to higher communication costs. Therefore, a critical need is to design an efficient clustered federated solution that can both better capture the diversity between local clients and minimize the communication and computation costs. To this end, we propose an efficient one-off clustered federated learning framework called FedEOC. FedEOC exploits the "learning-to-learn" characteristic of meta-learning to enhance the generalization of the model across different clients so that only a small number of iterations are needed for each client to quickly obtain locally adapted weights. Based on the well-initially trained weights on all clients, we can cluster the clients only once to achieve the effect of one-off clustering and multiple-round applying. Additionally, to alleviate the issue of cluster imbalance, FedEOC is equipped with a Decomposition and Consolidation (Dec-Con) mechanism to decompose the clients from the extreme clusters and consolidate them into the most similar ones. The comprehensive experiments conducted on two real-world datasets demonstrate the superior capability of FedEOC from both aspects of accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
沉甸甸发布了新的文献求助10
1秒前
wallonce发布了新的文献求助10
1秒前
njmuolivia完成签到,获得积分10
2秒前
dz发布了新的文献求助10
2秒前
自由的痱子完成签到,获得积分10
2秒前
BillowHu完成签到,获得积分10
2秒前
雷若山完成签到,获得积分10
4秒前
BillowHu发布了新的文献求助10
4秒前
吴彦祖完成签到,获得积分10
4秒前
123发布了新的文献求助10
5秒前
lsy666发布了新的文献求助10
5秒前
无花果应助端庄的冷雁采纳,获得30
5秒前
6秒前
kkk发布了新的文献求助10
6秒前
kk完成签到,获得积分20
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
HIT_WXY应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得30
7秒前
Akim应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
ark861023发布了新的文献求助10
8秒前
完美世界应助江xiaoyu小鱼采纳,获得10
9秒前
9秒前
游一完成签到,获得积分10
10秒前
10秒前
贾舒涵发布了新的文献求助10
11秒前
Leonardi给志文的求助进行了留言
11秒前
13秒前
hhh334发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304594
求助须知:如何正确求助?哪些是违规求助? 2938563
关于积分的说明 8489148
捐赠科研通 2613044
什么是DOI,文献DOI怎么找? 1427077
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647483