Hierarchical Bayesian model for predicting small-strain stiffness of sand

分层数据库模型 联营 刚度 贝叶斯概率 计算机科学 数据挖掘 岩土工程 地质学 工程类 人工智能 结构工程
作者
Yuanqin Tao,Kok‐Kwang Phoon,Honglei Sun,Yuanqiang Cai
出处
期刊:Canadian Geotechnical Journal [Canadian Science Publishing]
被引量:11
标识
DOI:10.1139/cgj-2022-0598
摘要

This paper develops a hierarchical Bayesian model (HBM) that integrates the physical knowledge and the test data to predict the small-strain shear modulus Gmax for a target sand type. The limited target-specific data is combined with the abundant generic data through a hierarchical structure so that the variability of Gmax within one sand type and across different sand types can be captured. The hyperparameters that characterize the same underlying distribution of physical model parameters across all the sand types are first estimated from the abundant generic data. The model parameters for the new sand type are then updated as the limited site-specific data become available. The approach is illustrated using a generic database and two real examples not covered by the generic database. Multiple possible hierarchical models are compared in terms of model complexity and goodness-of-fit. The results show that the hierarchical modeling of small-strain shear modulus data is reasonable and necessary. The hierarchical model can provide less biased and more accurate predictions of Gmax compared to the commonly used complete pooling model, especially for cases where the site-specific data is quite different from the overall average of the generic database.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
宋叻叻发布了新的文献求助10
刚刚
1秒前
花影发布了新的文献求助20
1秒前
年过半摆完成签到,获得积分10
2秒前
rioo发布了新的文献求助10
2秒前
RR驳回了顾矜应助
3秒前
Lorrie发布了新的文献求助20
3秒前
asdfqwer发布了新的文献求助10
4秒前
味子橘发布了新的文献求助10
4秒前
打打应助Maestro_S采纳,获得10
4秒前
5秒前
huangfu发布了新的文献求助10
5秒前
6秒前
之星君完成签到,获得积分10
6秒前
王王应助keyanzhang采纳,获得30
6秒前
布打勒应助日月雨辰采纳,获得10
6秒前
6秒前
Iris_Zhang完成签到 ,获得积分10
6秒前
微笑的万天完成签到 ,获得积分10
7秒前
打打应助www采纳,获得10
7秒前
7秒前
科研通AI2S应助lyx采纳,获得10
7秒前
7秒前
公卫小白发布了新的文献求助160
9秒前
Pluto发布了新的文献求助10
10秒前
10秒前
悦耳的忆秋关注了科研通微信公众号
10秒前
宋叻叻完成签到,获得积分10
10秒前
李健应助Aer采纳,获得10
11秒前
jolyne完成签到,获得积分20
11秒前
李健的小迷弟应助wenyliang采纳,获得10
11秒前
曹小曹发布了新的文献求助10
11秒前
李健应助HHCC采纳,获得10
11秒前
CipherSage应助leee采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
虚心的乐安完成签到,获得积分10
12秒前
戒糖宝贝完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914