Review of feature selection approaches based on grouping of features

特征选择 计算机科学 维数之咒 聚类分析 人工智能 机器学习 冗余(工程) 特征(语言学) 数据挖掘 选择(遗传算法) 模式识别(心理学) 降维 语言学 操作系统 哲学
作者
Cihan Kuzudisli,Burcu Bakır-Güngör,Nurten Bulut,Bahjat F. Qaqish,Malik Yousef
出处
期刊:PeerJ [PeerJ]
卷期号:11: e15666-e15666 被引量:18
标识
DOI:10.7717/peerj.15666
摘要

With the rapid development in technology, large amounts of high-dimensional data have been generated. This high dimensionality including redundancy and irrelevancy poses a great challenge in data analysis and decision making. Feature selection (FS) is an effective way to reduce dimensionality by eliminating redundant and irrelevant data. Most traditional FS approaches score and rank each feature individually; and then perform FS either by eliminating lower ranked features or by retaining highly-ranked features. In this review, we discuss an emerging approach to FS that is based on initially grouping features, then scoring groups of features rather than scoring individual features. Despite the presence of reviews on clustering and FS algorithms, to the best of our knowledge, this is the first review focusing on FS techniques based on grouping. The typical idea behind FS through grouping is to generate groups of similar features with dissimilarity between groups, then select representative features from each cluster. Approaches under supervised, unsupervised, semi supervised and integrative frameworks are explored. The comparison of experimental results indicates the effectiveness of sequential, optimization-based ( i.e. , fuzzy or evolutionary), hybrid and multi-method approaches. When it comes to biological data, the involvement of external biological sources can improve analysis results. We hope this work’s findings can guide effective design of new FS approaches using feature grouping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
二队淼队长完成签到,获得积分10
5秒前
云瑾应助初见那只喵采纳,获得10
5秒前
南宫古伦完成签到 ,获得积分10
8秒前
所所应助超级月饼采纳,获得10
8秒前
9秒前
Jeffrey完成签到,获得积分10
11秒前
大个应助AOPs采纳,获得10
12秒前
13秒前
CipherSage应助豆沙卷采纳,获得10
14秒前
小蘑菇应助Ronggaz采纳,获得10
14秒前
南巷完成签到,获得积分10
14秒前
俏皮的以晴完成签到,获得积分10
15秒前
15秒前
科研通AI2S应助禾盒采纳,获得10
15秒前
mjn404发布了新的文献求助100
16秒前
搜集达人应助yaoyao采纳,获得10
16秒前
小马甲应助Rainstorm27采纳,获得10
18秒前
20秒前
韩韩韩完成签到,获得积分20
21秒前
一一完成签到,获得积分10
22秒前
22秒前
24秒前
百事可乐完成签到,获得积分20
25秒前
木木酱完成签到,获得积分10
26秒前
27秒前
端庄千青发布了新的文献求助10
27秒前
Ronggaz发布了新的文献求助10
29秒前
法外狂徒发布了新的文献求助10
29秒前
Rainstorm27发布了新的文献求助10
31秒前
yaoyao发布了新的文献求助10
31秒前
我是老大应助端庄千青采纳,获得10
32秒前
卡乐瑞咩吹可完成签到,获得积分10
33秒前
韩韩韩发布了新的文献求助20
34秒前
羊羊完成签到,获得积分10
34秒前
36秒前
yuki完成签到,获得积分10
37秒前
xyr发布了新的文献求助10
38秒前
38秒前
科目三应助小羊要加油采纳,获得10
39秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055393
求助须知:如何正确求助?哪些是违规求助? 2712170
关于积分的说明 7430007
捐赠科研通 2356998
什么是DOI,文献DOI怎么找? 1248385
科研通“疑难数据库(出版商)”最低求助积分说明 606700
版权声明 596093