Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning

连接体 情态动词 计算机科学 人工智能 机器学习 杠杆(统计) 图形 相互信息 模式识别(心理学) 理论计算机科学 功能连接 神经科学 心理学 化学 高分子化学
作者
Yanwu Yang,Chenfei Ye,Xutao Guo,Tao Wu,Yang Xiang,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 108-121 被引量:9
标识
DOI:10.1109/tmi.2023.3294967
摘要

Recently, the study of multi-modal brain connectome has recorded a tremendous increase and facilitated the diagnosis of brain disorders. In this paradigm, functional and structural networks, e.g., functional and structural connectivity derived from fMRI and DTI, are in some manner interacted but are not necessarily linearly related. Accordingly, there remains a great challenge to leverage complementary information for brain connectome analysis. Recently, Graph Convolutional Networks (GNN) have been widely applied to the fusion of multi-modal brain connectome. However, most existing GNN methods fail to couple inter-modal relationships. In this regard, we propose a Cross-modal Graph Neural Network (Cross-GNN) that captures inter-modal dependencies through dynamic graph learning and mutual learning. Specifically, the inter-modal representations are attentively coupled into a compositional space for reasoning inter-modal dependencies. Additionally, we investigate mutual learning in explicit and implicit ways: (1) Cross-modal representations are obtained by cross-embedding explicitly based on the inter-modal correspondence matrix. (2) We propose a cross-modal distillation method to implicitly regularize latent representations with cross-modal semantic contexts. We carry out statistical analysis on the attentively learned correspondence matrices to evaluate inter-modal relationships for associating disease biomarkers. Our extensive experiments on three datasets demonstrate the superiority of our proposed method for disease diagnosis with promising prediction performance and multi-modal connectome biomarker location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BSDL完成签到,获得积分20
2秒前
er发布了新的文献求助10
4秒前
5秒前
Akim应助Elena采纳,获得10
5秒前
kyfw发布了新的文献求助10
6秒前
xxxxxxx发布了新的文献求助10
6秒前
内向问旋完成签到 ,获得积分10
8秒前
harry发布了新的文献求助10
8秒前
小谷完成签到,获得积分10
9秒前
YC发布了新的文献求助10
9秒前
10秒前
苏尔琳诺完成签到,获得积分10
11秒前
SPQR发布了新的文献求助10
12秒前
科研通AI2S应助wen采纳,获得10
12秒前
14秒前
搜集达人应助Waltz采纳,获得100
14秒前
16秒前
16秒前
17秒前
19秒前
野原发布了新的文献求助10
20秒前
日日发布了新的文献求助10
22秒前
22秒前
lalala发布了新的文献求助10
23秒前
25秒前
领导范儿应助Catalysis123采纳,获得10
26秒前
愉悦完成签到,获得积分10
26秒前
29秒前
文华完成签到,获得积分10
30秒前
30秒前
ljb完成签到,获得积分10
30秒前
日日完成签到,获得积分20
30秒前
30秒前
小红书求接接接接一篇完成签到,获得积分10
30秒前
If完成签到 ,获得积分10
32秒前
Adel完成签到 ,获得积分10
33秒前
33秒前
34秒前
36秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141883
求助须知:如何正确求助?哪些是违规求助? 2792846
关于积分的说明 7804392
捐赠科研通 2449137
什么是DOI,文献DOI怎么找? 1303086
科研通“疑难数据库(出版商)”最低求助积分说明 626769
版权声明 601265