Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning

连接体 情态动词 计算机科学 人工智能 机器学习 杠杆(统计) 图形 相互信息 模式识别(心理学) 理论计算机科学 功能连接 神经科学 心理学 化学 高分子化学
作者
Yanwu Yang,Chenfei Ye,Xutao Guo,Tao Wu,Yang Xiang,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 108-121 被引量:40
标识
DOI:10.1109/tmi.2023.3294967
摘要

Recently, the study of multi-modal brain connectome has recorded a tremendous increase and facilitated the diagnosis of brain disorders. In this paradigm, functional and structural networks, e.g., functional and structural connectivity derived from fMRI and DTI, are in some manner interacted but are not necessarily linearly related. Accordingly, there remains a great challenge to leverage complementary information for brain connectome analysis. Recently, Graph Convolutional Networks (GNN) have been widely applied to the fusion of multi-modal brain connectome. However, most existing GNN methods fail to couple inter-modal relationships. In this regard, we propose a Cross-modal Graph Neural Network (Cross-GNN) that captures inter-modal dependencies through dynamic graph learning and mutual learning. Specifically, the inter-modal representations are attentively coupled into a compositional space for reasoning inter-modal dependencies. Additionally, we investigate mutual learning in explicit and implicit ways: (1) Cross-modal representations are obtained by cross-embedding explicitly based on the inter-modal correspondence matrix. (2) We propose a cross-modal distillation method to implicitly regularize latent representations with cross-modal semantic contexts. We carry out statistical analysis on the attentively learned correspondence matrices to evaluate inter-modal relationships for associating disease biomarkers. Our extensive experiments on three datasets demonstrate the superiority of our proposed method for disease diagnosis with promising prediction performance and multi-modal connectome biomarker location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助belly采纳,获得10
1秒前
1秒前
1秒前
朱颜发布了新的文献求助10
2秒前
狗子哥完成签到,获得积分10
2秒前
Hello应助kenna123采纳,获得10
2秒前
3秒前
lll完成签到 ,获得积分10
3秒前
彭于晏应助王涛采纳,获得10
3秒前
5秒前
5秒前
5秒前
li完成签到 ,获得积分10
6秒前
6秒前
优美从菡发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
睿O宝宝O完成签到 ,获得积分10
9秒前
耳喃完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
12秒前
耳喃发布了新的文献求助10
13秒前
hd发布了新的文献求助10
13秒前
彭于晏应助琦琦采纳,获得10
15秒前
负责丹亦发布了新的文献求助10
16秒前
wyh完成签到,获得积分10
16秒前
kenna123发布了新的文献求助10
16秒前
jing完成签到,获得积分10
17秒前
善学以致用应助涵忆采纳,获得10
17秒前
ang完成签到,获得积分10
18秒前
18秒前
外向芫发布了新的文献求助10
18秒前
SciGPT应助优美从菡采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474