Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning

连接体 情态动词 计算机科学 人工智能 机器学习 杠杆(统计) 图形 相互信息 模式识别(心理学) 理论计算机科学 功能连接 神经科学 心理学 化学 高分子化学
作者
Yanwu Yang,Chenfei Ye,Xutao Guo,Tao Wu,Yang Xiang,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 108-121 被引量:57
标识
DOI:10.1109/tmi.2023.3294967
摘要

Recently, the study of multi-modal brain connectome has recorded a tremendous increase and facilitated the diagnosis of brain disorders. In this paradigm, functional and structural networks, e.g., functional and structural connectivity derived from fMRI and DTI, are in some manner interacted but are not necessarily linearly related. Accordingly, there remains a great challenge to leverage complementary information for brain connectome analysis. Recently, Graph Convolutional Networks (GNN) have been widely applied to the fusion of multi-modal brain connectome. However, most existing GNN methods fail to couple inter-modal relationships. In this regard, we propose a Cross-modal Graph Neural Network (Cross-GNN) that captures inter-modal dependencies through dynamic graph learning and mutual learning. Specifically, the inter-modal representations are attentively coupled into a compositional space for reasoning inter-modal dependencies. Additionally, we investigate mutual learning in explicit and implicit ways: (1) Cross-modal representations are obtained by cross-embedding explicitly based on the inter-modal correspondence matrix. (2) We propose a cross-modal distillation method to implicitly regularize latent representations with cross-modal semantic contexts. We carry out statistical analysis on the attentively learned correspondence matrices to evaluate inter-modal relationships for associating disease biomarkers. Our extensive experiments on three datasets demonstrate the superiority of our proposed method for disease diagnosis with promising prediction performance and multi-modal connectome biomarker location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jianwu完成签到,获得积分10
刚刚
1秒前
ABC的小李发布了新的文献求助10
1秒前
杨洋发布了新的文献求助10
1秒前
皮燕胖年仔完成签到,获得积分10
1秒前
1秒前
小郭发布了新的文献求助10
1秒前
1秒前
1秒前
靓丽的沁完成签到 ,获得积分10
2秒前
玄风应助JonyJie采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
山野完成签到,获得积分10
4秒前
baiyuecheng完成签到,获得积分10
4秒前
4秒前
Akim应助花楹采纳,获得10
5秒前
5秒前
FashionBoy应助奕火采纳,获得10
5秒前
SciGPT应助田20202021采纳,获得10
5秒前
5秒前
Elfin1221完成签到 ,获得积分10
5秒前
小熊发布了新的文献求助10
5秒前
韩祖完成签到 ,获得积分10
6秒前
snai1发布了新的文献求助10
6秒前
aaa发布了新的文献求助10
7秒前
cc发布了新的文献求助10
7秒前
务实的一斩完成签到 ,获得积分10
8秒前
喵先生发布了新的文献求助10
8秒前
8秒前
得鹿梦鱼完成签到,获得积分10
8秒前
万能图书馆应助yu采纳,获得10
10秒前
朴素的11应助xingzi123采纳,获得10
10秒前
baiyuecheng发布了新的文献求助10
10秒前
华仔应助QUN采纳,获得10
11秒前
笑点低的梦槐完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531667
求助须知:如何正确求助?哪些是违规求助? 4620468
关于积分的说明 14573518
捐赠科研通 4560191
什么是DOI,文献DOI怎么找? 2498759
邀请新用户注册赠送积分活动 1478669
关于科研通互助平台的介绍 1450015