Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning

连接体 情态动词 计算机科学 人工智能 机器学习 杠杆(统计) 图形 相互信息 模式识别(心理学) 理论计算机科学 功能连接 神经科学 心理学 化学 高分子化学
作者
Yanwu Yang,Chenfei Ye,Xutao Guo,Tao Wu,Yang Xiang,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 108-121 被引量:22
标识
DOI:10.1109/tmi.2023.3294967
摘要

Recently, the study of multi-modal brain connectome has recorded a tremendous increase and facilitated the diagnosis of brain disorders. In this paradigm, functional and structural networks, e.g., functional and structural connectivity derived from fMRI and DTI, are in some manner interacted but are not necessarily linearly related. Accordingly, there remains a great challenge to leverage complementary information for brain connectome analysis. Recently, Graph Convolutional Networks (GNN) have been widely applied to the fusion of multi-modal brain connectome. However, most existing GNN methods fail to couple inter-modal relationships. In this regard, we propose a Cross-modal Graph Neural Network (Cross-GNN) that captures inter-modal dependencies through dynamic graph learning and mutual learning. Specifically, the inter-modal representations are attentively coupled into a compositional space for reasoning inter-modal dependencies. Additionally, we investigate mutual learning in explicit and implicit ways: (1) Cross-modal representations are obtained by cross-embedding explicitly based on the inter-modal correspondence matrix. (2) We propose a cross-modal distillation method to implicitly regularize latent representations with cross-modal semantic contexts. We carry out statistical analysis on the attentively learned correspondence matrices to evaluate inter-modal relationships for associating disease biomarkers. Our extensive experiments on three datasets demonstrate the superiority of our proposed method for disease diagnosis with promising prediction performance and multi-modal connectome biomarker location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
破晓完成签到,获得积分10
刚刚
1秒前
潇湘夜雨完成签到,获得积分10
1秒前
上官若男应助lane采纳,获得10
2秒前
黑天鹅发布了新的文献求助30
2秒前
科研小白完成签到,获得积分10
2秒前
neil发布了新的文献求助10
3秒前
岁月流年完成签到,获得积分10
3秒前
动听的靖琪完成签到,获得积分10
3秒前
ZhX完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
阿可阿可完成签到,获得积分10
5秒前
5秒前
桐桐应助maofeng采纳,获得10
6秒前
7秒前
ED应助李甄好采纳,获得10
7秒前
大模型应助李甄好采纳,获得10
7秒前
nkuwangkai发布了新的文献求助10
7秒前
SciGPT应助野原新之助采纳,获得10
8秒前
Jenaloe发布了新的文献求助10
8秒前
lsrlsr完成签到,获得积分10
9秒前
9秒前
大大怪发布了新的文献求助30
9秒前
10秒前
Ava应助玛琪玛小姐的狗采纳,获得10
10秒前
Lily发布了新的文献求助10
10秒前
饱满一手完成签到 ,获得积分10
11秒前
Janson完成签到,获得积分10
11秒前
文艺的明杰完成签到,获得积分10
11秒前
精明一寡发布了新的文献求助10
12秒前
12秒前
13秒前
顾矜应助椰子采纳,获得10
13秒前
研友_VZG7GZ应助虎啊虎啊采纳,获得10
13秒前
漫溢阳光完成签到 ,获得积分0
14秒前
贰鸟应助科研小白采纳,获得10
14秒前
学术小钻风关注了科研通微信公众号
14秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582