Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning

连接体 情态动词 计算机科学 人工智能 机器学习 杠杆(统计) 图形 相互信息 模式识别(心理学) 理论计算机科学 功能连接 神经科学 心理学 化学 高分子化学
作者
Yanwu Yang,Chenfei Ye,Xutao Guo,Tao Wu,Yang Xiang,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 108-121 被引量:20
标识
DOI:10.1109/tmi.2023.3294967
摘要

Recently, the study of multi-modal brain connectome has recorded a tremendous increase and facilitated the diagnosis of brain disorders. In this paradigm, functional and structural networks, e.g., functional and structural connectivity derived from fMRI and DTI, are in some manner interacted but are not necessarily linearly related. Accordingly, there remains a great challenge to leverage complementary information for brain connectome analysis. Recently, Graph Convolutional Networks (GNN) have been widely applied to the fusion of multi-modal brain connectome. However, most existing GNN methods fail to couple inter-modal relationships. In this regard, we propose a Cross-modal Graph Neural Network (Cross-GNN) that captures inter-modal dependencies through dynamic graph learning and mutual learning. Specifically, the inter-modal representations are attentively coupled into a compositional space for reasoning inter-modal dependencies. Additionally, we investigate mutual learning in explicit and implicit ways: (1) Cross-modal representations are obtained by cross-embedding explicitly based on the inter-modal correspondence matrix. (2) We propose a cross-modal distillation method to implicitly regularize latent representations with cross-modal semantic contexts. We carry out statistical analysis on the attentively learned correspondence matrices to evaluate inter-modal relationships for associating disease biomarkers. Our extensive experiments on three datasets demonstrate the superiority of our proposed method for disease diagnosis with promising prediction performance and multi-modal connectome biomarker location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
微纳组刘同完成签到,获得积分10
刚刚
haojiaolv完成签到,获得积分10
1秒前
1秒前
1秒前
orixero应助Twikky采纳,获得10
2秒前
安玖完成签到,获得积分10
2秒前
dyh6802发布了新的文献求助10
3秒前
拉长的忆南完成签到,获得积分10
4秒前
镜哥完成签到,获得积分10
4秒前
garyaa完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
17完成签到,获得积分10
5秒前
今后应助冷静的毛豆采纳,获得20
5秒前
5秒前
小马哥36发布了新的文献求助10
5秒前
ttttttuu发布了新的文献求助10
5秒前
甜美的秋凌完成签到,获得积分10
6秒前
10发布了新的文献求助10
7秒前
高高完成签到 ,获得积分10
7秒前
AAAAAAAAAAA发布了新的文献求助10
7秒前
8秒前
wxaaaa完成签到,获得积分10
8秒前
李爱国应助dd采纳,获得10
9秒前
10秒前
Jasper应助感性的凉面采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
情怀应助顺顺采纳,获得10
13秒前
garyaa发布了新的文献求助10
13秒前
13秒前
NexusExplorer应助奔奔采纳,获得10
13秒前
Orange应助Clean采纳,获得10
14秒前
Lucas应助ww采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794