Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning

连接体 情态动词 计算机科学 人工智能 机器学习 杠杆(统计) 图形 相互信息 模式识别(心理学) 理论计算机科学 功能连接 神经科学 心理学 化学 高分子化学
作者
Yanwu Yang,Chenfei Ye,Xutao Guo,Tao Wu,Yang Xiang,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 108-121 被引量:40
标识
DOI:10.1109/tmi.2023.3294967
摘要

Recently, the study of multi-modal brain connectome has recorded a tremendous increase and facilitated the diagnosis of brain disorders. In this paradigm, functional and structural networks, e.g., functional and structural connectivity derived from fMRI and DTI, are in some manner interacted but are not necessarily linearly related. Accordingly, there remains a great challenge to leverage complementary information for brain connectome analysis. Recently, Graph Convolutional Networks (GNN) have been widely applied to the fusion of multi-modal brain connectome. However, most existing GNN methods fail to couple inter-modal relationships. In this regard, we propose a Cross-modal Graph Neural Network (Cross-GNN) that captures inter-modal dependencies through dynamic graph learning and mutual learning. Specifically, the inter-modal representations are attentively coupled into a compositional space for reasoning inter-modal dependencies. Additionally, we investigate mutual learning in explicit and implicit ways: (1) Cross-modal representations are obtained by cross-embedding explicitly based on the inter-modal correspondence matrix. (2) We propose a cross-modal distillation method to implicitly regularize latent representations with cross-modal semantic contexts. We carry out statistical analysis on the attentively learned correspondence matrices to evaluate inter-modal relationships for associating disease biomarkers. Our extensive experiments on three datasets demonstrate the superiority of our proposed method for disease diagnosis with promising prediction performance and multi-modal connectome biomarker location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Gc采纳,获得10
1秒前
赘婿应助会飞的史迪奇采纳,获得10
1秒前
大王发布了新的文献求助10
2秒前
吼吼哈哈完成签到,获得积分10
2秒前
天天快乐应助懒人采纳,获得10
2秒前
在水一方应助lemon 1118采纳,获得10
3秒前
隐形曼青应助清脆棉花糖采纳,获得10
3秒前
3秒前
迷人的帅哥完成签到,获得积分20
3秒前
NexusExplorer应助WANNABEME采纳,获得10
4秒前
舒舒完成签到,获得积分10
4秒前
俏皮行云发布了新的文献求助10
4秒前
guo完成签到,获得积分10
4秒前
WGK发布了新的文献求助10
4秒前
Xxjj完成签到,获得积分10
5秒前
mojomars完成签到,获得积分0
5秒前
李子潭应助tigger采纳,获得20
5秒前
一区劳大完成签到 ,获得积分10
5秒前
6秒前
斯文败类应助故意的乐菱采纳,获得10
6秒前
JamesPei应助zy采纳,获得10
6秒前
格瑞迪贝儿完成签到 ,获得积分10
6秒前
7秒前
黄紫红蓝发布了新的文献求助10
7秒前
田様应助flyindancewei采纳,获得10
7秒前
开心果大王完成签到,获得积分10
8秒前
春色未软旧苔痕完成签到 ,获得积分10
8秒前
9秒前
9秒前
橘子柚子完成签到 ,获得积分10
9秒前
10秒前
10秒前
阳光大有完成签到,获得积分10
10秒前
脑洞疼应助俏皮行云采纳,获得10
10秒前
蜜蜂完成签到 ,获得积分10
10秒前
11秒前
chompa完成签到,获得积分10
11秒前
11秒前
英俊的铭应助czw采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396060
求助须知:如何正确求助?哪些是违规求助? 4516445
关于积分的说明 14059685
捐赠科研通 4428359
什么是DOI,文献DOI怎么找? 2432060
邀请新用户注册赠送积分活动 1424236
关于科研通互助平台的介绍 1403472