Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning

连接体 情态动词 计算机科学 人工智能 机器学习 杠杆(统计) 图形 相互信息 模式识别(心理学) 理论计算机科学 功能连接 神经科学 心理学 化学 高分子化学
作者
Yanwu Yang,Chenfei Ye,Xutao Guo,Tao Wu,Yang Xiang,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 108-121 被引量:40
标识
DOI:10.1109/tmi.2023.3294967
摘要

Recently, the study of multi-modal brain connectome has recorded a tremendous increase and facilitated the diagnosis of brain disorders. In this paradigm, functional and structural networks, e.g., functional and structural connectivity derived from fMRI and DTI, are in some manner interacted but are not necessarily linearly related. Accordingly, there remains a great challenge to leverage complementary information for brain connectome analysis. Recently, Graph Convolutional Networks (GNN) have been widely applied to the fusion of multi-modal brain connectome. However, most existing GNN methods fail to couple inter-modal relationships. In this regard, we propose a Cross-modal Graph Neural Network (Cross-GNN) that captures inter-modal dependencies through dynamic graph learning and mutual learning. Specifically, the inter-modal representations are attentively coupled into a compositional space for reasoning inter-modal dependencies. Additionally, we investigate mutual learning in explicit and implicit ways: (1) Cross-modal representations are obtained by cross-embedding explicitly based on the inter-modal correspondence matrix. (2) We propose a cross-modal distillation method to implicitly regularize latent representations with cross-modal semantic contexts. We carry out statistical analysis on the attentively learned correspondence matrices to evaluate inter-modal relationships for associating disease biomarkers. Our extensive experiments on three datasets demonstrate the superiority of our proposed method for disease diagnosis with promising prediction performance and multi-modal connectome biomarker location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen完成签到,获得积分10
1秒前
东风完成签到,获得积分10
1秒前
敏家发布了新的文献求助20
1秒前
奋斗不止发布了新的文献求助10
2秒前
思源应助小董采纳,获得10
3秒前
4秒前
小唐发布了新的文献求助10
4秒前
faiting发布了新的文献求助10
4秒前
4秒前
kygingying完成签到,获得积分10
4秒前
li完成签到,获得积分10
5秒前
xyq完成签到,获得积分10
6秒前
6秒前
Czerkingsky完成签到,获得积分10
6秒前
7秒前
浮游应助无限的以晴采纳,获得10
8秒前
mdomse2109发布了新的文献求助10
9秒前
云馨完成签到,获得积分10
9秒前
xyq发布了新的文献求助10
10秒前
chongjian完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
LIQING发布了新的文献求助10
11秒前
思源应助jackson采纳,获得10
12秒前
nn完成签到,获得积分10
12秒前
yznfly应助打工牛牛采纳,获得50
12秒前
量子星尘发布了新的文献求助10
13秒前
丘比特应助杨阳洋采纳,获得10
13秒前
李ny完成签到,获得积分20
13秒前
方秋完成签到,获得积分10
13秒前
14秒前
自由的蒜苗完成签到,获得积分10
14秒前
田田圈完成签到 ,获得积分10
14秒前
英俊的铭应助维生素采纳,获得10
15秒前
秋千有几根绳子完成签到 ,获得积分10
15秒前
星辰大海应助xyq采纳,获得10
15秒前
无花果应助jason采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434607
求助须知:如何正确求助?哪些是违规求助? 4546930
关于积分的说明 14204919
捐赠科研通 4466869
什么是DOI,文献DOI怎么找? 2448346
邀请新用户注册赠送积分活动 1439195
关于科研通互助平台的介绍 1416030