Mapping Multi-Modal Brain Connectome for Brain Disorder Diagnosis via Cross-Modal Mutual Learning

连接体 情态动词 计算机科学 人工智能 机器学习 杠杆(统计) 图形 相互信息 模式识别(心理学) 理论计算机科学 功能连接 神经科学 心理学 化学 高分子化学
作者
Yanwu Yang,Chenfei Ye,Xutao Guo,Tao Wu,Yang Xiang,Ting Ma
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 108-121 被引量:22
标识
DOI:10.1109/tmi.2023.3294967
摘要

Recently, the study of multi-modal brain connectome has recorded a tremendous increase and facilitated the diagnosis of brain disorders. In this paradigm, functional and structural networks, e.g., functional and structural connectivity derived from fMRI and DTI, are in some manner interacted but are not necessarily linearly related. Accordingly, there remains a great challenge to leverage complementary information for brain connectome analysis. Recently, Graph Convolutional Networks (GNN) have been widely applied to the fusion of multi-modal brain connectome. However, most existing GNN methods fail to couple inter-modal relationships. In this regard, we propose a Cross-modal Graph Neural Network (Cross-GNN) that captures inter-modal dependencies through dynamic graph learning and mutual learning. Specifically, the inter-modal representations are attentively coupled into a compositional space for reasoning inter-modal dependencies. Additionally, we investigate mutual learning in explicit and implicit ways: (1) Cross-modal representations are obtained by cross-embedding explicitly based on the inter-modal correspondence matrix. (2) We propose a cross-modal distillation method to implicitly regularize latent representations with cross-modal semantic contexts. We carry out statistical analysis on the attentively learned correspondence matrices to evaluate inter-modal relationships for associating disease biomarkers. Our extensive experiments on three datasets demonstrate the superiority of our proposed method for disease diagnosis with promising prediction performance and multi-modal connectome biomarker location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林谷雨发布了新的文献求助10
刚刚
JamesPei应助uraylong采纳,获得10
刚刚
1秒前
1秒前
ding应助gong采纳,获得10
2秒前
劳动之余完成签到,获得积分20
2秒前
阿龙发布了新的文献求助10
2秒前
CipherSage应助梦里格斗家采纳,获得10
2秒前
漂亮的人生完成签到,获得积分10
3秒前
sanages发布了新的文献求助10
5秒前
壶壶壶完成签到 ,获得积分10
5秒前
疯狂吃辣发布了新的文献求助10
5秒前
Ran发布了新的文献求助10
5秒前
含蓄的赛君完成签到,获得积分10
6秒前
程瑶瑶瑶完成签到 ,获得积分10
6秒前
8秒前
柑橘乌云完成签到,获得积分10
8秒前
9秒前
9秒前
眯眯眼的老鼠完成签到,获得积分10
9秒前
10秒前
11秒前
Kyone完成签到,获得积分10
11秒前
ccm应助无语的钢铁侠采纳,获得10
12秒前
12秒前
夜空发布了新的文献求助10
13秒前
哈哈发布了新的文献求助10
15秒前
ACaTo发布了新的文献求助10
15秒前
15秒前
鸿渐于陆发布了新的文献求助10
16秒前
16秒前
16秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
风清扬应助科研通管家采纳,获得30
18秒前
聪慧小霜应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
春野花枝发布了新的文献求助10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578692
求助须知:如何正确求助?哪些是违规求助? 3997386
关于积分的说明 12375523
捐赠科研通 3671644
什么是DOI,文献DOI怎么找? 2023482
邀请新用户注册赠送积分活动 1057516
科研通“疑难数据库(出版商)”最低求助积分说明 944359