A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile

公共交通 计算机科学 递归(计算机科学) 过境(卫星) 随机建模 模式选择 路径(计算) 数学优化 运筹学 运输工程 数学 工程类 算法 计算机网络 统计
作者
Cristián E. Cortés,Pedro Donoso,Leonel Gutiérrez,Daniel Herl,Diego Muñoz
出处
期刊:Transportation Research Part B-methodological [Elsevier]
卷期号:174: 102780-102780
标识
DOI:10.1016/j.trb.2023.102780
摘要

A strategic public transport equilibrium model is developed that considers each user's trip decision, covering the choices of access stop, mode and line, alighting stop, and transfer or egress. At each stage, these choices are considered to be stochastic and made under capacity constraints resulting in waiting time increases at stops and stations due to demand levels and/or arriving vehicle loads. The modeling strategy is based on the hyper-path concept, but rather than evaluate user strategies, the approach models transitions at all individual nodes, thus facilitating computational efficiency. In this approach, we develop a recursive method different from resolving explicitly a recursion based on Bellman´s equation, which is suitable for large and dense transit networks. A method is presented for estimating the model parameters, which was applied to the real case of the Santiago, Chile transit system based on passive transaction datasets generated by users’ smart cards and GPS technology aboard the system's buses. These data were used to estimate alighting stops and an exhaustive and disaggregate reconstruction of all user trips. Once calibrated, the model proved able to predict the trip assignments observed in the calibration dataset as well as datasets from later periods, making predictions that closely fit the observations and adapting well to changes in network topology, operating patterns, and user demand. Therefore, the model should have considerable potential as a powerful, flexible, and highly useful tool for system regulators and operators who define public transport structures, operations, and policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风卷云淡发布了新的文献求助10
刚刚
1秒前
张世达完成签到,获得积分20
2秒前
Zz发布了新的文献求助10
3秒前
多情的裘完成签到 ,获得积分10
3秒前
朱宸完成签到,获得积分10
3秒前
benben应助坚强的严青采纳,获得10
5秒前
5秒前
田様应助坚强的严青采纳,获得10
5秒前
CipherSage应助坚强的严青采纳,获得10
5秒前
ZXL发布了新的文献求助10
6秒前
6秒前
switch完成签到,获得积分20
7秒前
辉@完成签到 ,获得积分10
7秒前
7秒前
wanidamm完成签到,获得积分10
9秒前
suo发布了新的文献求助10
9秒前
Xiaoixa发布了新的文献求助30
9秒前
11秒前
淡淡雪糕完成签到,获得积分10
11秒前
14秒前
四福祥完成签到,获得积分10
15秒前
zfczfc发布了新的文献求助10
15秒前
小鱼呆呆脑完成签到,获得积分10
16秒前
17秒前
大个应助qingzhou采纳,获得10
18秒前
Li完成签到 ,获得积分10
19秒前
完美世界应助坚强的严青采纳,获得10
22秒前
落雪关注了科研通微信公众号
22秒前
24秒前
搜集达人应助zwd采纳,获得10
24秒前
FashionBoy应助赵辰宇采纳,获得10
25秒前
25秒前
亦可完成签到,获得积分10
26秒前
雪山完成签到,获得积分0
26秒前
yerim完成签到,获得积分10
26秒前
深情安青应助zsy采纳,获得30
27秒前
仲半邪完成签到,获得积分10
27秒前
28秒前
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157630
求助须知:如何正确求助?哪些是违规求助? 2808948
关于积分的说明 7879413
捐赠科研通 2467414
什么是DOI,文献DOI怎么找? 1313449
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919