An optimized PDMS microfluidic device for ultra-fast and high-throughput imaging flow cytometry

微通道 微流控 材料科学 吞吐量 流速 流动聚焦 炸薯条 实验室晶片 纳米技术 流量(数学) 生物医学工程 光电子学 计算机科学 工程类 机械 电信 物理 无线
作者
Xun Liu,J Zhou,Ruopeng Yan,Tao Tang,Shubin Wei,Rubing Li,Dan Hou,Yueyun Weng,Du Wang,Hui Shen,Fuling Zhou,Yo Tanaka,Ming Li,Yoichiroh Hosokawa,Yaxiaer Yalikun,Cheng Lei
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:23 (16): 3571-3580 被引量:3
标识
DOI:10.1039/d3lc00237c
摘要

Imaging flow cytometry (IFC) is a powerful tool for cell detection and analysis due to its high throughput and compatibility in image acquisition. Optical time-stretch (OTS) imaging is considered as one of the most promising imaging techniques for IFC because it can realize cell imaging at a flow speed of around 60 m s-1. However, existing PDMS-based microchannels cannot function at flow velocities higher than 10 m s-1; thus the capability of OTS-based IFC is significantly limited. To overcome the velocity barrier for PDMS-based microchannels, we proposed an optimized design of PDMS-based microchannels with reduced hydraulic resistance and 3D hydrodynamic focusing capability, which can drive fluids at an ultra-high flow velocity (of up to 40 m s-1) by using common syringe pumps. To verify the feasibility of our design, we fabricated and installed the microchannel in an OTS IFC system. The experimental results first proved that the proposed microchannel can support a stable flow velocity of up to 40 m s-1 without any leakage or damage. Then, we demonstrated that the OTS IFC is capable of imaging cells at a velocity of up to 40 m s-1 with good quality. To the best of our knowledge, it is the first time that IFC has achieved such a high flow velocity just by using a PDMS-glass chip. Moreover, high velocity can enhance the focusing of cells on the optical focal plane, increasing the number of detected cells and the throughput. This work provides a promising solution for IFC to fully release its capability of advanced imaging techniques by operating at an extremely high screening throughput.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
外向蜡烛完成签到 ,获得积分10
刚刚
小小宝完成签到 ,获得积分10
刚刚
潇洒的冰烟完成签到,获得积分10
2秒前
2秒前
文艺裘完成签到,获得积分10
2秒前
3秒前
Lee应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
Raymond应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
iVANPENNY应助科研通管家采纳,获得10
3秒前
TCB发布了新的文献求助10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
自信晓博发布了新的文献求助10
4秒前
十二完成签到 ,获得积分10
4秒前
5秒前
橘子屿布丁完成签到,获得积分10
5秒前
5秒前
5秒前
邓艳梅完成签到 ,获得积分10
6秒前
7秒前
dydy发布了新的文献求助10
7秒前
L~完成签到,获得积分10
7秒前
暗生崎乐完成签到 ,获得积分10
8秒前
669完成签到,获得积分10
8秒前
Lucas应助自信晓博采纳,获得10
8秒前
exosome完成签到,获得积分20
8秒前
9秒前
学啊学啊发发完成签到,获得积分20
9秒前
Ali应助专注雨珍采纳,获得10
9秒前
DASHU完成签到,获得积分20
9秒前
秃头披风侠完成签到,获得积分10
10秒前
yanjiuhuzu完成签到,获得积分10
10秒前
欣喜忻完成签到,获得积分10
10秒前
织诗成锦完成签到,获得积分10
10秒前
10秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Angio-based 3DStent for evaluation of stent expansion 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2994734
求助须知:如何正确求助?哪些是违规求助? 2654863
关于积分的说明 7183347
捐赠科研通 2290489
什么是DOI,文献DOI怎么找? 1213975
版权声明 592771
科研通“疑难数据库(出版商)”最低求助积分说明 592602