Machine Learning-Based Prediction of Mechanical Properties and Performance of Nickel–Graphene Nanocomposites Using Molecular Dynamics Simulation Data

石墨烯 材料科学 纳米复合材料 纳米材料 人工智能 机器学习 支持向量机 分子动力学 体积分数 人工神经网络 计算机科学 复合材料 机械工程 纳米技术 工程类 物理 量子力学
作者
W. Jin,Jiayun Pei,Pu Xie,Jincong Chen,Haiyan Zhao
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (13): 12190-12199 被引量:4
标识
DOI:10.1021/acsanm.3c01919
摘要

Accurately predicting the mechanical properties of graphene-reinforced metal matrix composites is of utmost importance due to its critical role in the design and utilization of nanocomposite materials. The conventional approach of employing molecular dynamics (MD) simulations for this purpose faces a substantial increase in computational costs when considering the combined effects of multiple factors. In contrast, machine learning (ML) models offer a rapid and efficient alternative by swiftly comprehending and predicting material properties following adequate training. In this paper, we employed a long short-term memory (LSTM) model, based on MD calculation data, to accurately predict the mechanical response and key mechanical properties of nickel–graphene composite nanomaterials. Specifically, we thoroughly investigated the comprehensive impact of temperature, graphene orientation angle, and graphene volume fraction on the mechanical properties. Our verification process revealed that high graphene volume and high orientation angles led to increased dislocation absorption, consequently weakening the composite material. To assess the hardness prediction capabilities, we conducted a comparative analysis between the LSTM model and classical multilayer perceptron (MLP) neural networks, as well as the traditional nonlinear regression method, support vector machine (SVM). The obtained results demonstrated that the LSTM models exhibited a remarkable ability to accurately predict the mechanical properties of nickel–graphene composite nanomaterials, showcasing Pearson correlation coefficients exceeding 0.95 when compared to the calculation data. Moreover, the LSTM model effectively comprehends and predicts the complete indentation depth–force curve, thus providing enhanced predictions of material properties. This study proposes an innovative combination of MD simulations and ML models, which holds significant application potential in predicting and designing the performance of graphene-reinforced metal matrix composite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
MoriZhang完成签到,获得积分10
2秒前
所所应助炸鸡叔采纳,获得10
3秒前
4秒前
6秒前
今后应助yiryir采纳,获得10
6秒前
微笑青柏发布了新的文献求助10
7秒前
10秒前
11秒前
szc完成签到 ,获得积分10
14秒前
无花果应助微笑青柏采纳,获得10
15秒前
弹指一挥间完成签到,获得积分10
16秒前
17秒前
17秒前
19秒前
baixun完成签到 ,获得积分20
22秒前
22秒前
研友_VZG7GZ应助xxin采纳,获得10
22秒前
传奇3应助知知采纳,获得10
22秒前
22秒前
阿泠发布了新的文献求助10
23秒前
24秒前
zhaoyuqing发布了新的文献求助10
24秒前
zzz_发布了新的文献求助10
25秒前
云渺完成签到,获得积分10
26秒前
dzhe发布了新的文献求助10
28秒前
chen发布了新的文献求助10
28秒前
31秒前
zzz_完成签到,获得积分10
32秒前
阿泠完成签到,获得积分10
33秒前
斯文败类应助淡定的海瑶采纳,获得10
34秒前
34秒前
凉拌小萝卜完成签到,获得积分10
34秒前
34秒前
35秒前
fjg关注了科研通微信公众号
36秒前
555646446发布了新的文献求助10
38秒前
fqw发布了新的文献求助30
38秒前
研友_VZG7GZ应助凉拌小萝卜采纳,获得10
38秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128954
求助须知:如何正确求助?哪些是违规求助? 2779683
关于积分的说明 7744576
捐赠科研通 2434926
什么是DOI,文献DOI怎么找? 1293779
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530