Machine Learning-Based Prediction of Mechanical Properties and Performance of Nickel–Graphene Nanocomposites Using Molecular Dynamics Simulation Data

石墨烯 材料科学 纳米复合材料 纳米材料 人工智能 机器学习 支持向量机 分子动力学 体积分数 人工神经网络 计算机科学 复合材料 机械工程 纳米技术 工程类 物理 量子力学
作者
W. Jin,Jiayun Pei,Pu Xie,Jincong Chen,Haiyan Zhao
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (13): 12190-12199 被引量:26
标识
DOI:10.1021/acsanm.3c01919
摘要

Accurately predicting the mechanical properties of graphene-reinforced metal matrix composites is of utmost importance due to its critical role in the design and utilization of nanocomposite materials. The conventional approach of employing molecular dynamics (MD) simulations for this purpose faces a substantial increase in computational costs when considering the combined effects of multiple factors. In contrast, machine learning (ML) models offer a rapid and efficient alternative by swiftly comprehending and predicting material properties following adequate training. In this paper, we employed a long short-term memory (LSTM) model, based on MD calculation data, to accurately predict the mechanical response and key mechanical properties of nickel–graphene composite nanomaterials. Specifically, we thoroughly investigated the comprehensive impact of temperature, graphene orientation angle, and graphene volume fraction on the mechanical properties. Our verification process revealed that high graphene volume and high orientation angles led to increased dislocation absorption, consequently weakening the composite material. To assess the hardness prediction capabilities, we conducted a comparative analysis between the LSTM model and classical multilayer perceptron (MLP) neural networks, as well as the traditional nonlinear regression method, support vector machine (SVM). The obtained results demonstrated that the LSTM models exhibited a remarkable ability to accurately predict the mechanical properties of nickel–graphene composite nanomaterials, showcasing Pearson correlation coefficients exceeding 0.95 when compared to the calculation data. Moreover, the LSTM model effectively comprehends and predicts the complete indentation depth–force curve, thus providing enhanced predictions of material properties. This study proposes an innovative combination of MD simulations and ML models, which holds significant application potential in predicting and designing the performance of graphene-reinforced metal matrix composite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陌然浅笑发布了新的文献求助10
1秒前
核桃发布了新的文献求助10
1秒前
2秒前
勤qin发布了新的文献求助10
3秒前
WY完成签到,获得积分10
4秒前
wanci应助爱学习的YY采纳,获得10
4秒前
舒心明杰完成签到,获得积分10
4秒前
赘婿应助xh采纳,获得10
4秒前
王麒发布了新的文献求助10
5秒前
isonomia完成签到,获得积分10
5秒前
Livrik发布了新的文献求助10
5秒前
小刘同学发布了新的文献求助10
6秒前
小蘑菇应助曼凡采纳,获得10
6秒前
繁弱发布了新的文献求助10
7秒前
如果完成签到,获得积分10
7秒前
YYYY完成签到,获得积分10
7秒前
123茄子完成签到 ,获得积分10
7秒前
Jeanne完成签到,获得积分10
8秒前
开整吧完成签到,获得积分10
8秒前
整点儿薯条完成签到,获得积分10
8秒前
lll完成签到,获得积分10
9秒前
9秒前
田様应助LIUYI采纳,获得10
9秒前
10秒前
10秒前
xh完成签到,获得积分10
11秒前
曼凡应助文件撤销了驳回
13秒前
樱岛麻衣完成签到,获得积分10
13秒前
Ava应助lili采纳,获得10
14秒前
dream完成签到 ,获得积分10
14秒前
14秒前
14秒前
ANLYep完成签到,获得积分10
15秒前
xh发布了新的文献求助10
15秒前
李庆林完成签到,获得积分10
15秒前
小蘑菇应助齐美丽采纳,获得10
15秒前
缓慢的夕阳完成签到,获得积分10
15秒前
雨碎寒江发布了新的文献求助10
16秒前
金志铭发布了新的文献求助10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227238
求助须知:如何正确求助?哪些是违规求助? 4398359
关于积分的说明 13689318
捐赠科研通 4263055
什么是DOI,文献DOI怎么找? 2339509
邀请新用户注册赠送积分活动 1336803
关于科研通互助平台的介绍 1292920