Machine Learning-Based Prediction of Mechanical Properties and Performance of Nickel–Graphene Nanocomposites Using Molecular Dynamics Simulation Data

石墨烯 材料科学 纳米复合材料 纳米材料 人工智能 机器学习 支持向量机 分子动力学 体积分数 人工神经网络 计算机科学 复合材料 机械工程 纳米技术 工程类 物理 量子力学
作者
W. Jin,Jiayun Pei,Pu Xie,Jincong Chen,Haiyan Zhao
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (13): 12190-12199 被引量:26
标识
DOI:10.1021/acsanm.3c01919
摘要

Accurately predicting the mechanical properties of graphene-reinforced metal matrix composites is of utmost importance due to its critical role in the design and utilization of nanocomposite materials. The conventional approach of employing molecular dynamics (MD) simulations for this purpose faces a substantial increase in computational costs when considering the combined effects of multiple factors. In contrast, machine learning (ML) models offer a rapid and efficient alternative by swiftly comprehending and predicting material properties following adequate training. In this paper, we employed a long short-term memory (LSTM) model, based on MD calculation data, to accurately predict the mechanical response and key mechanical properties of nickel–graphene composite nanomaterials. Specifically, we thoroughly investigated the comprehensive impact of temperature, graphene orientation angle, and graphene volume fraction on the mechanical properties. Our verification process revealed that high graphene volume and high orientation angles led to increased dislocation absorption, consequently weakening the composite material. To assess the hardness prediction capabilities, we conducted a comparative analysis between the LSTM model and classical multilayer perceptron (MLP) neural networks, as well as the traditional nonlinear regression method, support vector machine (SVM). The obtained results demonstrated that the LSTM models exhibited a remarkable ability to accurately predict the mechanical properties of nickel–graphene composite nanomaterials, showcasing Pearson correlation coefficients exceeding 0.95 when compared to the calculation data. Moreover, the LSTM model effectively comprehends and predicts the complete indentation depth–force curve, thus providing enhanced predictions of material properties. This study proposes an innovative combination of MD simulations and ML models, which holds significant application potential in predicting and designing the performance of graphene-reinforced metal matrix composite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GYY完成签到,获得积分10
刚刚
好好应助yang采纳,获得10
刚刚
chinnker发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
小张z完成签到,获得积分10
3秒前
deletelzr完成签到,获得积分10
3秒前
3秒前
群山发布了新的文献求助10
4秒前
青柠完成签到,获得积分10
4秒前
wangzengyan完成签到,获得积分10
4秒前
海绵梅完成签到 ,获得积分10
4秒前
hhh完成签到,获得积分10
5秒前
5秒前
JJ发布了新的文献求助10
5秒前
5秒前
小lu完成签到,获得积分10
6秒前
vigour发布了新的文献求助10
6秒前
lilili发布了新的文献求助10
6秒前
好钟意呀发布了新的文献求助10
6秒前
yiping完成签到,获得积分10
7秒前
奋斗的猪大肠完成签到,获得积分10
7秒前
liangmh完成签到,获得积分10
7秒前
Akim应助机灵的以筠采纳,获得10
8秒前
CodeCraft应助妙木仙采纳,获得10
8秒前
杨潇丶丶完成签到,获得积分10
8秒前
清秀语梦发布了新的文献求助10
8秒前
9秒前
Ava应助小研同学采纳,获得10
9秒前
9秒前
9秒前
JPH1990完成签到,获得积分10
9秒前
xue发布了新的文献求助10
10秒前
10秒前
CN完成签到,获得积分10
11秒前
11秒前
YL发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718472
求助须知:如何正确求助?哪些是违规求助? 5252894
关于积分的说明 15285900
捐赠科研通 4868646
什么是DOI,文献DOI怎么找? 2614347
邀请新用户注册赠送积分活动 1564180
关于科研通互助平台的介绍 1521729