Machine Learning-Based Prediction of Mechanical Properties and Performance of Nickel–Graphene Nanocomposites Using Molecular Dynamics Simulation Data

石墨烯 材料科学 纳米复合材料 纳米材料 人工智能 机器学习 支持向量机 分子动力学 体积分数 人工神经网络 计算机科学 复合材料 机械工程 纳米技术 工程类 物理 量子力学
作者
W. Jin,Jiayun Pei,Pu Xie,Jincong Chen,Haiyan Zhao
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (13): 12190-12199 被引量:9
标识
DOI:10.1021/acsanm.3c01919
摘要

Accurately predicting the mechanical properties of graphene-reinforced metal matrix composites is of utmost importance due to its critical role in the design and utilization of nanocomposite materials. The conventional approach of employing molecular dynamics (MD) simulations for this purpose faces a substantial increase in computational costs when considering the combined effects of multiple factors. In contrast, machine learning (ML) models offer a rapid and efficient alternative by swiftly comprehending and predicting material properties following adequate training. In this paper, we employed a long short-term memory (LSTM) model, based on MD calculation data, to accurately predict the mechanical response and key mechanical properties of nickel–graphene composite nanomaterials. Specifically, we thoroughly investigated the comprehensive impact of temperature, graphene orientation angle, and graphene volume fraction on the mechanical properties. Our verification process revealed that high graphene volume and high orientation angles led to increased dislocation absorption, consequently weakening the composite material. To assess the hardness prediction capabilities, we conducted a comparative analysis between the LSTM model and classical multilayer perceptron (MLP) neural networks, as well as the traditional nonlinear regression method, support vector machine (SVM). The obtained results demonstrated that the LSTM models exhibited a remarkable ability to accurately predict the mechanical properties of nickel–graphene composite nanomaterials, showcasing Pearson correlation coefficients exceeding 0.95 when compared to the calculation data. Moreover, the LSTM model effectively comprehends and predicts the complete indentation depth–force curve, thus providing enhanced predictions of material properties. This study proposes an innovative combination of MD simulations and ML models, which holds significant application potential in predicting and designing the performance of graphene-reinforced metal matrix composite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自信鑫鹏完成签到,获得积分10
1秒前
HYH完成签到,获得积分10
1秒前
Harish完成签到,获得积分10
2秒前
研友_851KE8发布了新的文献求助10
2秒前
2秒前
一段乐多发布了新的文献求助10
2秒前
2秒前
华仔完成签到,获得积分10
2秒前
刘百慧完成签到,获得积分10
2秒前
2秒前
Wyan发布了新的文献求助80
4秒前
成就映秋发布了新的文献求助30
4秒前
科研通AI2S应助坤坤采纳,获得10
4秒前
整齐芷文完成签到,获得积分10
5秒前
科研通AI5应助小马哥36采纳,获得10
5秒前
灵巧荆发布了新的文献求助10
6秒前
小二郎应助侦察兵采纳,获得10
6秒前
爆米花完成签到 ,获得积分10
6秒前
今后应助Evan123采纳,获得10
6秒前
凤凰之玉完成签到 ,获得积分10
7秒前
shi hui应助冬瓜炖排骨采纳,获得10
7秒前
8秒前
dyh6802发布了新的文献求助10
8秒前
冷静雅青发布了新的文献求助10
8秒前
CipherSage应助猪猪hero采纳,获得10
9秒前
领导范儿应助不凡采纳,获得30
9秒前
顾矜应助坚定的亦绿采纳,获得10
10秒前
10秒前
yu完成签到,获得积分10
10秒前
Chris完成签到,获得积分10
11秒前
cookie发布了新的文献求助10
12秒前
胖仔完成签到,获得积分10
12秒前
Chan0501完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
duxinyue发布了新的文献求助10
14秒前
汉堡转转转完成签到,获得积分10
15秒前
喵酱发布了新的文献求助30
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794