Machine Learning-Based Prediction of Mechanical Properties and Performance of Nickel–Graphene Nanocomposites Using Molecular Dynamics Simulation Data

石墨烯 材料科学 纳米复合材料 纳米材料 人工智能 机器学习 支持向量机 分子动力学 体积分数 人工神经网络 计算机科学 复合材料 机械工程 纳米技术 工程类 物理 量子力学
作者
W. Jin,Jiayun Pei,Pu Xie,Jincong Chen,Haiyan Zhao
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:6 (13): 12190-12199 被引量:9
标识
DOI:10.1021/acsanm.3c01919
摘要

Accurately predicting the mechanical properties of graphene-reinforced metal matrix composites is of utmost importance due to its critical role in the design and utilization of nanocomposite materials. The conventional approach of employing molecular dynamics (MD) simulations for this purpose faces a substantial increase in computational costs when considering the combined effects of multiple factors. In contrast, machine learning (ML) models offer a rapid and efficient alternative by swiftly comprehending and predicting material properties following adequate training. In this paper, we employed a long short-term memory (LSTM) model, based on MD calculation data, to accurately predict the mechanical response and key mechanical properties of nickel–graphene composite nanomaterials. Specifically, we thoroughly investigated the comprehensive impact of temperature, graphene orientation angle, and graphene volume fraction on the mechanical properties. Our verification process revealed that high graphene volume and high orientation angles led to increased dislocation absorption, consequently weakening the composite material. To assess the hardness prediction capabilities, we conducted a comparative analysis between the LSTM model and classical multilayer perceptron (MLP) neural networks, as well as the traditional nonlinear regression method, support vector machine (SVM). The obtained results demonstrated that the LSTM models exhibited a remarkable ability to accurately predict the mechanical properties of nickel–graphene composite nanomaterials, showcasing Pearson correlation coefficients exceeding 0.95 when compared to the calculation data. Moreover, the LSTM model effectively comprehends and predicts the complete indentation depth–force curve, thus providing enhanced predictions of material properties. This study proposes an innovative combination of MD simulations and ML models, which holds significant application potential in predicting and designing the performance of graphene-reinforced metal matrix composite materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
高高初柔完成签到,获得积分20
4秒前
隐形曼青应助天真的雨采纳,获得10
6秒前
风清扬应助言言右采纳,获得30
6秒前
单纯的又菱完成签到,获得积分10
8秒前
Lucas应助海藻采纳,获得10
8秒前
酷波er应助xyff2002采纳,获得10
11秒前
11秒前
13秒前
15秒前
15秒前
高高初柔发布了新的文献求助10
16秒前
ZY发布了新的文献求助10
18秒前
猪猪hero应助Quinna采纳,获得10
18秒前
诚心的大炮完成签到,获得积分10
19秒前
kikyo发布了新的文献求助10
19秒前
风清扬应助个性的傲安采纳,获得50
20秒前
标致绮露发布了新的文献求助10
20秒前
yishan101发布了新的文献求助20
20秒前
20秒前
21秒前
21秒前
22秒前
Alvin发布了新的文献求助10
22秒前
泰裤辣发布了新的文献求助10
23秒前
HOO关闭了HOO文献求助
24秒前
皆可完成签到 ,获得积分10
24秒前
xyff2002发布了新的文献求助10
25秒前
大个应助ZY采纳,获得10
25秒前
科研废完成签到,获得积分10
25秒前
樊樊完成签到,获得积分10
27秒前
猪猪hero应助觅海采纳,获得10
27秒前
27秒前
悦悦完成签到,获得积分10
28秒前
zkexuan完成签到,获得积分10
28秒前
丰富语儿发布了新的文献求助10
28秒前
皆可关注了科研通微信公众号
28秒前
吴南宛完成签到,获得积分20
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959705
求助须知:如何正确求助?哪些是违规求助? 3505951
关于积分的说明 11127133
捐赠科研通 3237931
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871709
科研通“疑难数据库(出版商)”最低求助积分说明 802976