Look Ahead: Improving the Accuracy of Time-Series Forecasting by Previewing Future Time Features

时间戳 计算机科学 时间序列 代表(政治) 机器学习 标准时间 变压器 系列(地层学) 人工智能 特征学习 光学(聚焦) 数据挖掘 实时计算 工程类 法学 电压 古生物学 光学 物理 天文 电气工程 政治 生物 政治学
作者
Seonmin Kim,Dong‐Kyu Chae
标识
DOI:10.1145/3539618.3592013
摘要

Time-series forecasting has been actively studied and adopted in various real-world domains. Recently there have been two research mainstreams in this area: building Transformer-based architectures such as Informer, Autoformer and Reformer, and developing time-series representation learning frameworks based on contrastive learning such as TS2Vec and CoST. Both efforts have greatly improved the performance of time series forecasting. In this paper, we investigate a novel direction towards improving the forecasting performance even more, which is orthogonal to the aforementioned mainstreams as a model-agnostic scheme. We focus on time stamp embeddings that has been less-focused in the literature. Our idea is simple-yet-effective: based on given current time stamp, we predict embeddings of its near future time stamp and utilize the predicted embeddings in the time-series (value) forecasting task. We believe that if such future time information can be previewed at the time of prediction, they can be utilized by any time-series forecasting models as useful additional information. Our experimental results confirmed that our method consistently and significantly improves the accuracy of the recent Transformer-based models and time-series representation learning frameworks. Our code is available at: https://github.com/sunsunmin/Look_Ahead
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雕栏玉砌完成签到,获得积分10
1秒前
岁月完成签到,获得积分10
2秒前
整齐无声发布了新的文献求助10
3秒前
可爱的函函应助一坨采纳,获得10
4秒前
Ava应助qwf采纳,获得10
4秒前
5秒前
8秒前
王媛完成签到,获得积分10
8秒前
9秒前
9秒前
伯赏汝燕完成签到,获得积分10
10秒前
上官若男应助小方采纳,获得50
11秒前
科目三应助早睡早起采纳,获得10
13秒前
CipherSage应助早睡早起采纳,获得10
13秒前
善学以致用应助hongw1980采纳,获得10
13秒前
14秒前
14秒前
王媛发布了新的文献求助10
15秒前
请叫我风吹麦浪应助ucjudgo采纳,获得10
16秒前
16秒前
17秒前
17秒前
干干发布了新的文献求助30
17秒前
17秒前
王雨曦发布了新的文献求助10
17秒前
FashionBoy应助嘻嘻嘻采纳,获得10
18秒前
LOT完成签到,获得积分10
18秒前
沫沫关注了科研通微信公众号
18秒前
XM发布了新的文献求助10
19秒前
大模型应助黄yellow采纳,获得10
20秒前
20秒前
汉堡包应助Another采纳,获得10
21秒前
善学以致用应助zhou采纳,获得10
21秒前
Hony132发布了新的文献求助10
23秒前
CC发布了新的文献求助10
24秒前
25秒前
生产队的LV完成签到,获得积分10
25秒前
25秒前
肥而不腻的羚羊完成签到,获得积分10
26秒前
Owen应助来来采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712