Look Ahead: Improving the Accuracy of Time-Series Forecasting by Previewing Future Time Features

时间戳 计算机科学 时间序列 代表(政治) 机器学习 标准时间 变压器 系列(地层学) 人工智能 特征学习 光学(聚焦) 数据挖掘 实时计算 工程类 古生物学 物理 电气工程 光学 天文 电压 政治 政治学 法学 生物
作者
Seonmin Kim,Dong‐Kyu Chae
标识
DOI:10.1145/3539618.3592013
摘要

Time-series forecasting has been actively studied and adopted in various real-world domains. Recently there have been two research mainstreams in this area: building Transformer-based architectures such as Informer, Autoformer and Reformer, and developing time-series representation learning frameworks based on contrastive learning such as TS2Vec and CoST. Both efforts have greatly improved the performance of time series forecasting. In this paper, we investigate a novel direction towards improving the forecasting performance even more, which is orthogonal to the aforementioned mainstreams as a model-agnostic scheme. We focus on time stamp embeddings that has been less-focused in the literature. Our idea is simple-yet-effective: based on given current time stamp, we predict embeddings of its near future time stamp and utilize the predicted embeddings in the time-series (value) forecasting task. We believe that if such future time information can be previewed at the time of prediction, they can be utilized by any time-series forecasting models as useful additional information. Our experimental results confirmed that our method consistently and significantly improves the accuracy of the recent Transformer-based models and time-series representation learning frameworks. Our code is available at: https://github.com/sunsunmin/Look_Ahead
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助gaoyang123采纳,获得30
刚刚
希望天下0贩的0应助xixi采纳,获得10
1秒前
一禅发布了新的文献求助10
1秒前
叮当发布了新的文献求助10
2秒前
2秒前
汉堡包应助Yuan采纳,获得10
3秒前
悟小空完成签到,获得积分10
3秒前
3秒前
3秒前
Ler完成签到,获得积分10
4秒前
dd发布了新的文献求助10
4秒前
4秒前
4秒前
hao发布了新的文献求助10
6秒前
6秒前
小幸运完成签到,获得积分10
7秒前
sxr发布了新的文献求助10
7秒前
vivia完成签到,获得积分10
8秒前
zc_0116应助朱荧荧采纳,获得80
8秒前
8秒前
晓军发布了新的文献求助10
9秒前
9秒前
khjia发布了新的文献求助10
9秒前
Singularity应助清修采纳,获得10
10秒前
细心不二发布了新的文献求助10
11秒前
11秒前
iidae完成签到,获得积分10
11秒前
Ava应助carol7298采纳,获得10
12秒前
蔺亦丝完成签到,获得积分20
14秒前
笨笨妙旋完成签到,获得积分20
15秒前
Hello应助晓军采纳,获得10
15秒前
15秒前
无花果应助hao采纳,获得10
16秒前
16秒前
16秒前
xixi发布了新的文献求助10
16秒前
害怕的听筠完成签到,获得积分10
16秒前
李西瓜完成签到 ,获得积分10
16秒前
端庄涵雁完成签到,获得积分10
17秒前
脑洞疼应助研小白采纳,获得10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308756
求助须知:如何正确求助?哪些是违规求助? 2942097
关于积分的说明 8507396
捐赠科研通 2617067
什么是DOI,文献DOI怎么找? 1429972
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186