Simple Contrastive Graph Clustering

计算机科学 聚类分析 预处理器 人工智能 数据挖掘 图形 理论计算机科学 模式识别(心理学) 机器学习 算法
作者
Yue Liu,Xihong Yang,Sihang Zhou,Xinwang Liu,Siwei Wang,Ke Liang,Wenxuan Tu,Liang Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 13789-13800 被引量:57
标识
DOI:10.1109/tnnls.2023.3271871
摘要

Contrastive learning has recently attracted plenty of attention in deep graph clustering due to its promising performance. However, complicated data augmentations and time-consuming graph convolutional operations undermine the efficiency of these methods. To solve this problem, we propose a simple contrastive graph clustering (SCGC) algorithm to improve the existing methods from the perspectives of network architecture, data augmentation, and objective function. As to the architecture, our network includes two main parts, that is, preprocessing and network backbone. A simple low-pass denoising operation conducts neighbor information aggregation as an independent preprocessing, and only two multilayer perceptrons (MLPs) are included as the backbone. For data augmentation, instead of introducing complex operations over graphs, we construct two augmented views of the same vertex by designing parameter unshared Siamese encoders and perturbing the node embeddings directly. Finally, as to the objective function, to further improve the clustering performance, a novel cross-view structural consistency objective function is designed to enhance the discriminative capability of the learned network. Extensive experimental results on seven benchmark datasets validate our proposed algorithm's effectiveness and superiority. Significantly, our algorithm outperforms the recent contrastive deep clustering competitors with at least seven times speedup on average. The code of SCGC is released at SCGC. Besides, we share a collection of deep graph clustering, including papers, codes, and datasets at ADGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
欢呼的铅笔关注了科研通微信公众号
4秒前
5秒前
5秒前
6秒前
DH发布了新的文献求助10
7秒前
yirenli发布了新的文献求助10
8秒前
桐桐应助2758543477采纳,获得10
9秒前
思源应助甜心院士采纳,获得10
9秒前
Jasper应助AnYijing采纳,获得30
10秒前
lewis_xl完成签到,获得积分10
11秒前
xushanqi发布了新的文献求助10
12秒前
眼睛大的胡萝卜完成签到 ,获得积分10
14秒前
14秒前
bob发布了新的文献求助10
15秒前
陶小陶完成签到,获得积分10
15秒前
16秒前
贰鸟应助null_采纳,获得20
17秒前
17秒前
ozz完成签到,获得积分10
17秒前
19秒前
clewaychan完成签到,获得积分10
20秒前
20秒前
freshfish1017应助王森采纳,获得20
21秒前
22秒前
泯珉发布了新的文献求助10
22秒前
peng发布了新的文献求助10
23秒前
24秒前
24秒前
传奇3应助月光采纳,获得10
24秒前
24秒前
华仔应助ozz采纳,获得30
25秒前
25秒前
25秒前
25秒前
26秒前
26秒前
沉静白安发布了新的文献求助10
27秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421300
求助须知:如何正确求助?哪些是违规求助? 3022113
关于积分的说明 8899292
捐赠科研通 2709412
什么是DOI,文献DOI怎么找? 1485721
科研通“疑难数据库(出版商)”最低求助积分说明 686864
邀请新用户注册赠送积分活动 681931