已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simple Contrastive Graph Clustering

计算机科学 聚类分析 预处理器 人工智能 数据挖掘 图形 理论计算机科学 模式识别(心理学) 机器学习 算法
作者
Yue Liu,Xihong Yang,Sihang Zhou,Xinwang Liu,Siwei Wang,Ke Liang,Wenxuan Tu,Liang Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 13789-13800 被引量:74
标识
DOI:10.1109/tnnls.2023.3271871
摘要

Contrastive learning has recently attracted plenty of attention in deep graph clustering due to its promising performance. However, complicated data augmentations and time-consuming graph convolutional operations undermine the efficiency of these methods. To solve this problem, we propose a simple contrastive graph clustering (SCGC) algorithm to improve the existing methods from the perspectives of network architecture, data augmentation, and objective function. As to the architecture, our network includes two main parts, that is, preprocessing and network backbone. A simple low-pass denoising operation conducts neighbor information aggregation as an independent preprocessing, and only two multilayer perceptrons (MLPs) are included as the backbone. For data augmentation, instead of introducing complex operations over graphs, we construct two augmented views of the same vertex by designing parameter unshared Siamese encoders and perturbing the node embeddings directly. Finally, as to the objective function, to further improve the clustering performance, a novel cross-view structural consistency objective function is designed to enhance the discriminative capability of the learned network. Extensive experimental results on seven benchmark datasets validate our proposed algorithm's effectiveness and superiority. Significantly, our algorithm outperforms the recent contrastive deep clustering competitors with at least seven times speedup on average. The code of SCGC is released at SCGC. Besides, we share a collection of deep graph clustering, including papers, codes, and datasets at ADGC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
科目三应助哈哈采纳,获得10
5秒前
right_ac关注了科研通微信公众号
5秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得30
6秒前
无花果应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
1233445发布了新的文献求助10
8秒前
好好考发布了新的文献求助10
9秒前
露露发布了新的文献求助10
10秒前
英姑应助整齐的幻柏采纳,获得10
10秒前
10秒前
12秒前
科研通AI5应助崔嘉坤采纳,获得10
16秒前
Nextone发布了新的文献求助10
16秒前
情怀应助Zzz采纳,获得10
17秒前
17秒前
罐装发布了新的文献求助10
19秒前
22秒前
清爽念寒发布了新的文献求助10
22秒前
24秒前
Oracle应助echopussy采纳,获得20
24秒前
kyn完成签到 ,获得积分10
25秒前
稳重以冬发布了新的文献求助10
26秒前
jocelyn发布了新的文献求助10
28秒前
luo0306应助阿芫采纳,获得10
30秒前
taran发布了新的文献求助10
31秒前
lzsz2021发布了新的文献求助10
32秒前
甘蔗完成签到,获得积分10
33秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725103
求助须知:如何正确求助?哪些是违规求助? 3270217
关于积分的说明 9964981
捐赠科研通 2985104
什么是DOI,文献DOI怎么找? 1637795
邀请新用户注册赠送积分活动 777716
科研通“疑难数据库(出版商)”最低求助积分说明 747164