亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A dynamic adaptive iterative clustered federated learning scheme

计算机科学 适应性 先验与后验 灵活性(工程) 方案(数学) 星团(航天器) 分布式计算 聚类分析 数据挖掘 直觉 机器学习 计算机网络 生态学 数学分析 哲学 统计 数学 认识论 生物
作者
Run Du,Shuo Xu,Rui Zhang,Lijuan Xu,Hui Xia
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:276: 110741-110741 被引量:3
标识
DOI:10.1016/j.knosys.2023.110741
摘要

Clustered federated learning (CFL), as an important research branch of personalized federated learning (FL), can better cope with the highly statistically heterogeneous federated learning environment and provide higher quality services to clients. However, existing CFL schemes have difficulties in adapting to real-time data distribution changes due to disadvantages such as relatively fixed cluster structure. This poses a great challenge to the practical deployment of CFL schemes. To address the common problems of existing CFL schemes, we propose a more flexible dynamic adaptive cluster federated learning scheme (AICFL). AICFL uses the mutual sensitivity between models and data as intuition to perform cluster identity estimation, cluster addition, cluster model updating, and cluster deletion in the early iterations of FL to find the optimal client cluster partitioning. Firstly, this process does not require a priori estimation of the number of clusters and does not require the online participation of all clients. Secondly, during cluster partitioning, AICFL is able to adjust the cluster structure in real time based on the overall data distribution. Moreover, AICFL has the same ability to adapt to changes in the system environment in the middle and late stages of FL. The experimental results show that our scheme gives the most reasonable cluster partitioning results in all cases which indicates that AICFL is able to cope with the above-mentioned distribution changes well, and has better adaptability and better flexibility than other schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YOLO完成签到 ,获得积分10
4秒前
moiumuio完成签到,获得积分10
5秒前
6秒前
早睡早起完成签到,获得积分10
8秒前
包容的跳跳糖完成签到 ,获得积分10
8秒前
兴奋硬币完成签到,获得积分10
12秒前
芋头发布了新的文献求助10
12秒前
文艺猫咪完成签到,获得积分10
13秒前
勤劳初雪完成签到 ,获得积分10
18秒前
花生王子完成签到 ,获得积分10
19秒前
成就若颜完成签到,获得积分10
20秒前
23秒前
善学以致用应助whisper采纳,获得10
24秒前
24秒前
芋头完成签到,获得积分10
24秒前
机灵的鲜花完成签到 ,获得积分10
25秒前
小高给小高的求助进行了留言
35秒前
XL神放完成签到 ,获得积分10
38秒前
39秒前
41秒前
whisper发布了新的文献求助10
44秒前
elaina发布了新的文献求助10
46秒前
和光同尘完成签到,获得积分10
48秒前
52秒前
CodeCraft应助守仁则阳明采纳,获得10
56秒前
58秒前
1分钟前
bkagyin应助程科采纳,获得10
1分钟前
猫罐头完成签到,获得积分10
1分钟前
1分钟前
XL神放发布了新的文献求助30
1分钟前
VDC应助科研通管家采纳,获得30
1分钟前
VDC应助科研通管家采纳,获得50
1分钟前
小林太郎应助科研通管家采纳,获得10
1分钟前
天空之国发布了新的文献求助10
1分钟前
冰激凌完成签到,获得积分10
1分钟前
1分钟前
今后应助xiaixax采纳,获得10
1分钟前
别潜然发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544354
求助须知:如何正确求助?哪些是违规求助? 3121546
关于积分的说明 9347794
捐赠科研通 2819801
什么是DOI,文献DOI怎么找? 1550452
邀请新用户注册赠送积分活动 722526
科研通“疑难数据库(出版商)”最低求助积分说明 713273