Spatio-temporal dynamic change mechanism analysis of traffic conflict risk based on trajectory data

计算机科学 弹道 机制(生物学) 数据挖掘 撞车 风险分析(工程) 计量经济学 数学 医学 哲学 物理 认识论 天文 程序设计语言
作者
Yuping Hu,Ye Li,Helai Huang
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:191: 107203-107203 被引量:5
标识
DOI:10.1016/j.aap.2023.107203
摘要

Analyzing risk dynamic change mechanism under spatio-temporal effects can provide a better understanding of traffic risk, which helps reinforce the safety improvement. Traditionally, spatio-temporal studies based on crash data were mostly conducted to explore crash risk evolution mechanism from a macroscopic perspective. Dynamic change mechanism of short-term risk within a small-scale area deserves exploration, which cannot be captured in macroscopic crash-based studies. It is practical to analyze traffic conflict risk as a surrogate safety measure, which can preferably overcome the limitations of crash-based studies. This study aims to explore the spatio-temporal dynamic change mechanism of conflict risk based on trajectory data. Both conflict frequency and severity are integrated and assessed by applying fuzzy logic theory to develop the whole risk indicator. Trajectories on U.S. Highway101 from NGSIM dataset are utilized and aggregated. A two-step framework is proposed to analyze the risk dynamic change mechanism. The spatial Markov model is firstly applied to explore the transition probability of risk level, and then the panel regression approach is employed to quantify the relationship between spatio-temporal risk and traffic characteristics. Modeling results show that (1) the dynamic change trend of safety states differs under different spatial lag conditions, and it can be well depicted by the spatial Markov model; (2) dynamic spatial panel data modeling method performs better than the model that only considers temporal or spatial dependency. The novel proposed framework promotes a systematic exploration of conflict risk from a mesoscopic perspective, which contributes to assess the real-time road safety more comprehensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助miao采纳,获得10
2秒前
2秒前
喵喵完成签到 ,获得积分10
3秒前
3秒前
徐嘿嘿发布了新的文献求助30
3秒前
4秒前
ding应助Hu采纳,获得10
5秒前
Owen应助成就猫咪采纳,获得10
6秒前
科研通AI5应助汤易文采纳,获得10
7秒前
若水发布了新的文献求助10
9秒前
9秒前
10秒前
清梦完成签到,获得积分10
11秒前
聪明的绮波完成签到,获得积分10
11秒前
科研通AI2S应助112233445566采纳,获得10
12秒前
14秒前
我是老大应助司念者你采纳,获得10
14秒前
魔女完成签到,获得积分10
14秒前
迷路曼雁完成签到,获得积分10
15秒前
15秒前
合适春天完成签到,获得积分10
16秒前
17秒前
研友_VZG7GZ应助炼丹采纳,获得10
18秒前
柏林寒冬应助武雨寒采纳,获得10
18秒前
CodeCraft应助合适春天采纳,获得10
19秒前
20秒前
013完成签到,获得积分10
21秒前
陈富贵发布了新的文献求助10
21秒前
budingman发布了新的文献求助20
23秒前
23秒前
24秒前
YumiPg发布了新的文献求助10
25秒前
1111chen发布了新的文献求助30
27秒前
研友_VZG7GZ应助像风一样采纳,获得10
27秒前
28秒前
木木发布了新的文献求助10
30秒前
30秒前
32秒前
32秒前
YumiPg完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432