Spatio-temporal dynamic change mechanism analysis of traffic conflict risk based on trajectory data

计算机科学 弹道 机制(生物学) 数据挖掘 撞车 风险分析(工程) 计量经济学 数学 医学 哲学 物理 认识论 天文 程序设计语言
作者
Yuping Hu,Ye Li,Helai Huang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:191: 107203-107203 被引量:5
标识
DOI:10.1016/j.aap.2023.107203
摘要

Analyzing risk dynamic change mechanism under spatio-temporal effects can provide a better understanding of traffic risk, which helps reinforce the safety improvement. Traditionally, spatio-temporal studies based on crash data were mostly conducted to explore crash risk evolution mechanism from a macroscopic perspective. Dynamic change mechanism of short-term risk within a small-scale area deserves exploration, which cannot be captured in macroscopic crash-based studies. It is practical to analyze traffic conflict risk as a surrogate safety measure, which can preferably overcome the limitations of crash-based studies. This study aims to explore the spatio-temporal dynamic change mechanism of conflict risk based on trajectory data. Both conflict frequency and severity are integrated and assessed by applying fuzzy logic theory to develop the whole risk indicator. Trajectories on U.S. Highway101 from NGSIM dataset are utilized and aggregated. A two-step framework is proposed to analyze the risk dynamic change mechanism. The spatial Markov model is firstly applied to explore the transition probability of risk level, and then the panel regression approach is employed to quantify the relationship between spatio-temporal risk and traffic characteristics. Modeling results show that (1) the dynamic change trend of safety states differs under different spatial lag conditions, and it can be well depicted by the spatial Markov model; (2) dynamic spatial panel data modeling method performs better than the model that only considers temporal or spatial dependency. The novel proposed framework promotes a systematic exploration of conflict risk from a mesoscopic perspective, which contributes to assess the real-time road safety more comprehensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
故意的傲玉应助lll采纳,获得10
刚刚
1秒前
请叫我风吹麦浪应助lm采纳,获得10
1秒前
1秒前
1秒前
2秒前
科研通AI5应助水獭采纳,获得10
3秒前
3秒前
3秒前
研友_nv2r4n发布了新的文献求助10
4秒前
喵叽发布了新的文献求助10
4秒前
槐夏完成签到,获得积分10
4秒前
5秒前
科研通AI5应助su采纳,获得10
5秒前
5秒前
科目三应助MJQ采纳,获得30
5秒前
5秒前
慕子发布了新的文献求助20
6秒前
lumangxiaozi完成签到,获得积分10
6秒前
积极的凌波完成签到,获得积分10
6秒前
xiaxiao应助小小酥采纳,获得100
6秒前
523完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
8秒前
Hupoo发布了新的文献求助10
8秒前
传奇3应助冬瓜有内涵呐采纳,获得10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
Aurora发布了新的文献求助10
9秒前
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Chen发布了新的文献求助10
9秒前
prosperp应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762