Spatio-temporal dynamic change mechanism analysis of traffic conflict risk based on trajectory data

计算机科学 弹道 机制(生物学) 数据挖掘 撞车 风险分析(工程) 计量经济学 数学 医学 哲学 物理 认识论 天文 程序设计语言
作者
Yuping Hu,Ye Li,Helai Huang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:191: 107203-107203 被引量:5
标识
DOI:10.1016/j.aap.2023.107203
摘要

Analyzing risk dynamic change mechanism under spatio-temporal effects can provide a better understanding of traffic risk, which helps reinforce the safety improvement. Traditionally, spatio-temporal studies based on crash data were mostly conducted to explore crash risk evolution mechanism from a macroscopic perspective. Dynamic change mechanism of short-term risk within a small-scale area deserves exploration, which cannot be captured in macroscopic crash-based studies. It is practical to analyze traffic conflict risk as a surrogate safety measure, which can preferably overcome the limitations of crash-based studies. This study aims to explore the spatio-temporal dynamic change mechanism of conflict risk based on trajectory data. Both conflict frequency and severity are integrated and assessed by applying fuzzy logic theory to develop the whole risk indicator. Trajectories on U.S. Highway101 from NGSIM dataset are utilized and aggregated. A two-step framework is proposed to analyze the risk dynamic change mechanism. The spatial Markov model is firstly applied to explore the transition probability of risk level, and then the panel regression approach is employed to quantify the relationship between spatio-temporal risk and traffic characteristics. Modeling results show that (1) the dynamic change trend of safety states differs under different spatial lag conditions, and it can be well depicted by the spatial Markov model; (2) dynamic spatial panel data modeling method performs better than the model that only considers temporal or spatial dependency. The novel proposed framework promotes a systematic exploration of conflict risk from a mesoscopic perspective, which contributes to assess the real-time road safety more comprehensively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
君故关注了科研通微信公众号
刚刚
小波发布了新的文献求助10
刚刚
LYQ完成签到 ,获得积分10
1秒前
打打应助碧蓝青梦采纳,获得10
1秒前
科研小乞丐完成签到,获得积分10
1秒前
兴奋孤丝完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
完美世界应助KIM采纳,获得10
2秒前
1751587229发布了新的文献求助10
2秒前
懒羊羊发布了新的文献求助10
2秒前
3秒前
3秒前
观莲客完成签到,获得积分10
3秒前
3秒前
爆米花应助实验室纯牲采纳,获得10
4秒前
lizhiqian2024发布了新的文献求助10
4秒前
Owen应助AHHUI采纳,获得30
4秒前
4秒前
5秒前
阳光的虔纹完成签到 ,获得积分10
5秒前
万能图书馆应助llllqqq采纳,获得10
5秒前
wang发布了新的文献求助10
5秒前
晨雾锁阳完成签到 ,获得积分10
6秒前
Ava应助Hommand_藏山采纳,获得10
6秒前
6秒前
6秒前
Criminology34应助Blossom采纳,获得10
6秒前
丘比特应助gzmejiji采纳,获得10
7秒前
科研通AI6应助huihui采纳,获得10
7秒前
zhl发布了新的文献求助10
7秒前
Beacon发布了新的文献求助10
7秒前
蓝心发布了新的文献求助10
7秒前
7秒前
1751587229完成签到,获得积分10
8秒前
Mufreh给zyt的求助进行了留言
8秒前
专注的语堂完成签到,获得积分10
8秒前
华仔应助lizhiqian2024采纳,获得10
8秒前
袁诗槐发布了新的文献求助50
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300