Spatio-temporal dynamic change mechanism analysis of traffic conflict risk based on trajectory data

计算机科学 弹道 机制(生物学) 数据挖掘 撞车 风险分析(工程) 计量经济学 数学 医学 哲学 物理 认识论 天文 程序设计语言
作者
Yuping Hu,Ye Li,Helai Huang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:191: 107203-107203 被引量:5
标识
DOI:10.1016/j.aap.2023.107203
摘要

Analyzing risk dynamic change mechanism under spatio-temporal effects can provide a better understanding of traffic risk, which helps reinforce the safety improvement. Traditionally, spatio-temporal studies based on crash data were mostly conducted to explore crash risk evolution mechanism from a macroscopic perspective. Dynamic change mechanism of short-term risk within a small-scale area deserves exploration, which cannot be captured in macroscopic crash-based studies. It is practical to analyze traffic conflict risk as a surrogate safety measure, which can preferably overcome the limitations of crash-based studies. This study aims to explore the spatio-temporal dynamic change mechanism of conflict risk based on trajectory data. Both conflict frequency and severity are integrated and assessed by applying fuzzy logic theory to develop the whole risk indicator. Trajectories on U.S. Highway101 from NGSIM dataset are utilized and aggregated. A two-step framework is proposed to analyze the risk dynamic change mechanism. The spatial Markov model is firstly applied to explore the transition probability of risk level, and then the panel regression approach is employed to quantify the relationship between spatio-temporal risk and traffic characteristics. Modeling results show that (1) the dynamic change trend of safety states differs under different spatial lag conditions, and it can be well depicted by the spatial Markov model; (2) dynamic spatial panel data modeling method performs better than the model that only considers temporal or spatial dependency. The novel proposed framework promotes a systematic exploration of conflict risk from a mesoscopic perspective, which contributes to assess the real-time road safety more comprehensively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小尘埃完成签到,获得积分0
刚刚
冷月发布了新的文献求助10
1秒前
Chan完成签到,获得积分10
1秒前
guo完成签到,获得积分10
1秒前
library2025完成签到,获得积分10
2秒前
mouxq发布了新的文献求助10
2秒前
xing完成签到,获得积分10
2秒前
丽丽完成签到,获得积分10
2秒前
brwen完成签到,获得积分10
3秒前
秋天完成签到,获得积分10
4秒前
li发布了新的文献求助10
4秒前
wuyu完成签到,获得积分10
4秒前
blue完成签到,获得积分10
5秒前
5秒前
思源应助Caroline采纳,获得10
5秒前
风趣的芝麻完成签到 ,获得积分10
7秒前
失眠的海云完成签到,获得积分10
7秒前
NexusExplorer应助puhong zhang采纳,获得10
7秒前
zhang完成签到,获得积分10
7秒前
8秒前
8秒前
吃草草没完成签到 ,获得积分10
8秒前
赘婿应助大侦探皮卡丘采纳,获得10
8秒前
平常冬天完成签到,获得积分10
9秒前
gms完成签到,获得积分10
9秒前
冷月完成签到,获得积分10
10秒前
章鱼发布了新的文献求助10
10秒前
11秒前
Science完成签到,获得积分10
11秒前
英俊的铭应助俞安珊采纳,获得30
11秒前
认真丹亦完成签到 ,获得积分10
11秒前
whitebird完成签到,获得积分10
12秒前
温婉的易梦完成签到 ,获得积分10
12秒前
恒牙完成签到 ,获得积分10
12秒前
鲤鱼怀绿完成签到,获得积分10
13秒前
完美世界应助hanye采纳,获得10
13秒前
阿狸a完成签到,获得积分10
13秒前
_蝴蝶小姐发布了新的文献求助10
13秒前
MUWENYING完成签到,获得积分10
13秒前
13秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584934
求助须知:如何正确求助?哪些是违规求助? 4668775
关于积分的说明 14772496
捐赠科研通 4616501
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467626