Spatio-temporal dynamic change mechanism analysis of traffic conflict risk based on trajectory data

计算机科学 弹道 机制(生物学) 数据挖掘 撞车 风险分析(工程) 计量经济学 数学 医学 哲学 物理 认识论 天文 程序设计语言
作者
Yuping Hu,Ye Li,Helai Huang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:191: 107203-107203 被引量:5
标识
DOI:10.1016/j.aap.2023.107203
摘要

Analyzing risk dynamic change mechanism under spatio-temporal effects can provide a better understanding of traffic risk, which helps reinforce the safety improvement. Traditionally, spatio-temporal studies based on crash data were mostly conducted to explore crash risk evolution mechanism from a macroscopic perspective. Dynamic change mechanism of short-term risk within a small-scale area deserves exploration, which cannot be captured in macroscopic crash-based studies. It is practical to analyze traffic conflict risk as a surrogate safety measure, which can preferably overcome the limitations of crash-based studies. This study aims to explore the spatio-temporal dynamic change mechanism of conflict risk based on trajectory data. Both conflict frequency and severity are integrated and assessed by applying fuzzy logic theory to develop the whole risk indicator. Trajectories on U.S. Highway101 from NGSIM dataset are utilized and aggregated. A two-step framework is proposed to analyze the risk dynamic change mechanism. The spatial Markov model is firstly applied to explore the transition probability of risk level, and then the panel regression approach is employed to quantify the relationship between spatio-temporal risk and traffic characteristics. Modeling results show that (1) the dynamic change trend of safety states differs under different spatial lag conditions, and it can be well depicted by the spatial Markov model; (2) dynamic spatial panel data modeling method performs better than the model that only considers temporal or spatial dependency. The novel proposed framework promotes a systematic exploration of conflict risk from a mesoscopic perspective, which contributes to assess the real-time road safety more comprehensively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助oMayii采纳,获得10
1秒前
1秒前
元谷雪发布了新的文献求助10
1秒前
1秒前
迷路柏柳完成签到,获得积分10
1秒前
1秒前
十三完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
水星红豆关注了科研通微信公众号
3秒前
贪玩雁山完成签到,获得积分10
3秒前
冷艳一德发布了新的文献求助10
4秒前
迷路柏柳发布了新的文献求助10
4秒前
wxyshare给勤奋的凌香的求助进行了留言
5秒前
5秒前
英姑应助xxw采纳,获得10
5秒前
6秒前
ShuanglaiLiu发布了新的文献求助30
6秒前
xanderxue发布了新的文献求助10
6秒前
7秒前
情怀应助AixGnad采纳,获得30
8秒前
YMing完成签到,获得积分20
8秒前
羊羊羊完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
刘欣雨发布了新的文献求助10
9秒前
9秒前
10秒前
Lucas应助媛媛采纳,获得10
10秒前
YMing发布了新的文献求助10
11秒前
海晨发布了新的文献求助10
11秒前
11秒前
蝎y发布了新的文献求助10
12秒前
彭佳乐发布了新的文献求助10
12秒前
12秒前
yuyu发布了新的文献求助10
13秒前
13秒前
xanderxue完成签到,获得积分10
14秒前
Yuki酱发布了新的文献求助10
14秒前
ShuanglaiLiu完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571571
求助须知:如何正确求助?哪些是违规求助? 4656806
关于积分的说明 14717928
捐赠科研通 4597626
什么是DOI,文献DOI怎么找? 2523291
邀请新用户注册赠送积分活动 1494143
关于科研通互助平台的介绍 1464280