已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatio-temporal dynamic change mechanism analysis of traffic conflict risk based on trajectory data

计算机科学 弹道 机制(生物学) 数据挖掘 撞车 风险分析(工程) 计量经济学 数学 医学 哲学 物理 认识论 天文 程序设计语言
作者
Yuping Hu,Ye Li,Helai Huang
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:191: 107203-107203 被引量:5
标识
DOI:10.1016/j.aap.2023.107203
摘要

Analyzing risk dynamic change mechanism under spatio-temporal effects can provide a better understanding of traffic risk, which helps reinforce the safety improvement. Traditionally, spatio-temporal studies based on crash data were mostly conducted to explore crash risk evolution mechanism from a macroscopic perspective. Dynamic change mechanism of short-term risk within a small-scale area deserves exploration, which cannot be captured in macroscopic crash-based studies. It is practical to analyze traffic conflict risk as a surrogate safety measure, which can preferably overcome the limitations of crash-based studies. This study aims to explore the spatio-temporal dynamic change mechanism of conflict risk based on trajectory data. Both conflict frequency and severity are integrated and assessed by applying fuzzy logic theory to develop the whole risk indicator. Trajectories on U.S. Highway101 from NGSIM dataset are utilized and aggregated. A two-step framework is proposed to analyze the risk dynamic change mechanism. The spatial Markov model is firstly applied to explore the transition probability of risk level, and then the panel regression approach is employed to quantify the relationship between spatio-temporal risk and traffic characteristics. Modeling results show that (1) the dynamic change trend of safety states differs under different spatial lag conditions, and it can be well depicted by the spatial Markov model; (2) dynamic spatial panel data modeling method performs better than the model that only considers temporal or spatial dependency. The novel proposed framework promotes a systematic exploration of conflict risk from a mesoscopic perspective, which contributes to assess the real-time road safety more comprehensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助czqjlu采纳,获得10
刚刚
MUSTer一一完成签到 ,获得积分10
1秒前
可爱的函函应助Y先生的粉采纳,获得10
5秒前
dfgh发布了新的文献求助10
5秒前
5秒前
老年外科发布了新的文献求助10
6秒前
6秒前
KYT若发布了新的文献求助10
9秒前
虞头星星完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
17秒前
研友_VZG7GZ应助仙道彰-7采纳,获得20
17秒前
18秒前
包容东蒽完成签到 ,获得积分10
19秒前
19秒前
21秒前
StevenW发布了新的文献求助20
21秒前
点凌蝶完成签到,获得积分10
21秒前
22秒前
杳鸢应助张懒懒采纳,获得10
23秒前
Captain发布了新的文献求助10
23秒前
24秒前
pluto应助哇哇哇哇采纳,获得10
24秒前
changlinJ发布了新的文献求助10
24秒前
麦辣鸡翅发布了新的文献求助10
26秒前
仙道彰-7完成签到,获得积分10
26秒前
没有昵称完成签到 ,获得积分10
26秒前
26秒前
27秒前
星辰大海应助KYT若采纳,获得10
27秒前
czqjlu完成签到,获得积分20
27秒前
28秒前
仙道彰-7发布了新的文献求助20
31秒前
dfgh发布了新的文献求助10
31秒前
32秒前
隐形曼青应助changlinJ采纳,获得10
33秒前
憂xqc发布了新的文献求助10
34秒前
搞怪飞机完成签到,获得积分20
35秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261392
求助须知:如何正确求助?哪些是违规求助? 2902228
关于积分的说明 8319235
捐赠科研通 2572102
什么是DOI,文献DOI怎么找? 1397367
科研通“疑难数据库(出版商)”最低求助积分说明 653708
邀请新用户注册赠送积分活动 632223