Artificial Neural Processing‐Driven Bioelectronic Nose for the Diagnosis of Diabetes and Its Complications

糖尿病 鼻子 医学 电子鼻 2型糖尿病 疾病 糖尿病性心肌病 人口 重症监护医学 病理 内科学 心肌病 外科 人工智能 计算机科学 内分泌学 心力衰竭 环境卫生
作者
Woong Bi Jang,Dongwon Yi,Thanh Mien Nguyen,Yujin Lee,Eun Ji Lee,Jin-Ho Choi,You Hwan Kim,Eun‐Jung Choi,Jin‐Woo Oh,Su-Kyoung Kwon
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:12 (26) 被引量:2
标识
DOI:10.1002/adhm.202300845
摘要

Diabetes and its complications affect the younger population and are associated with a high mortality rate; however, early diagnosis can contribute to the selection of appropriate treatment regimens that can reduce mortality. Although diabetes diagnosis via exhaled breath has great potential for early diagnosis, research on such diagnosis is restricted to disease detection, requiring in-depth examination to diagnose and classify diseases and their complications. This study demonstrates the use of an artificial neural processing-based bioelectronic nose to accurately diagnose diabetes and classify diabetic types (type I and II) and their complications, such as heart disease. Specifically, an M13 phage-based electronic nose (e-nose) is used to explore the features of subjects with diabetes at various levels of cellular and organismal organization (cells, liver organoids, and mice). Exhaled breath samples are collected during culturing and exposed to the phage-based e-nose. Compared with cells, liver organoids cultured under conditions mimicking a diabetic environment display properties that closely resemble the characteristics of diabetic mice. Using neural pattern separation, the M13 phage-based e-nose achieves a classification success rate of over 86% for four conditions in mice, namely, type 1 diabetes, type 2 diabetes, diabetic cardiomyopathy, and cardiomyopathy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hoooo...发布了新的文献求助10
刚刚
zzz完成签到,获得积分10
刚刚
顾矜应助jo采纳,获得10
1秒前
飞兰发布了新的文献求助10
2秒前
Hello应助你好啊采纳,获得10
3秒前
哈哈发布了新的文献求助10
3秒前
3秒前
wuliumu完成签到,获得积分10
5秒前
聪明大米完成签到 ,获得积分10
6秒前
Avicii完成签到 ,获得积分10
7秒前
CodeCraft应助yoru16采纳,获得10
7秒前
阳佟半仙完成签到,获得积分10
7秒前
lcc完成签到,获得积分10
8秒前
9秒前
雷雷完成签到,获得积分10
10秒前
务实青筠完成签到 ,获得积分10
10秒前
一只小陈陈完成签到,获得积分10
12秒前
12秒前
lcc发布了新的文献求助10
13秒前
hanzhang完成签到,获得积分10
13秒前
无语的从云完成签到,获得积分10
14秒前
14秒前
哈哈完成签到,获得积分10
14秒前
15秒前
16秒前
LUCKY完成签到,获得积分10
16秒前
乐山乐水完成签到,获得积分10
17秒前
18秒前
脑洞疼应助科研通管家采纳,获得30
19秒前
19秒前
Raylihuang应助科研通管家采纳,获得20
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
咖啡豆应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
HEIKU应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139963
求助须知:如何正确求助?哪些是违规求助? 2790878
关于积分的说明 7796853
捐赠科研通 2447242
什么是DOI,文献DOI怎么找? 1301754
科研通“疑难数据库(出版商)”最低求助积分说明 626336
版权声明 601194