FRBNet: Feedback refinement boundary network for semantic segmentation in breast ultrasound images

分割 计算机科学 特征(语言学) 人工智能 边界(拓扑) 频道(广播) 模式识别(心理学) 乳腺超声检查 计算机视觉 特征提取 乳腺摄影术 数学 乳腺癌 内科学 数学分析 哲学 癌症 医学 语言学 计算机网络
作者
Weisheng Li,Guang Zeng,Feiyan Li,Yinghui Zhao,Hongchuan Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:86: 105194-105194
标识
DOI:10.1016/j.bspc.2023.105194
摘要

Ultrasound breast tumour segmentation is a key step in computer-aided diagnosis and provides an important basis for clinical diagnosis and analysis. Accurate segmentation of breast tumours from ultrasound images is a challenging task due to the characteristics of black shadows, blurred boundaries and uneven colour intensity variations between classes. Currently, most breast tumour segmentation methods focus on extracting multi-scale information and fusing contextual information while underestimating the importance of feature information that can assist in identifying object boundaries in segmentation tasks. The loss of boundary feature information can easily lead to discontinuity or inaccuracy of the target boundary when the network generates the final prediction map. To address this problem, we propose a new feedback refinement boundary network (FRBNet) for accurate segmentation of breast tumour regions in ultrasound images, which mainly consists of a channel calibration module (CCM), boundary detection (BD) module, and feedback refinement module (FRM). Specifically, before fusing low-level feature maps with high-level feature maps, CCM first adopts the method of redistributing feature channel responses to enhance the channels carrying key target information and suppress the noisy channels in low-level feature maps. The BD module then improves the quality of the boundaries in the segmentation results by additionally learning the boundaries of breast tumours to provide accurate boundary feature information for subsequent prediction. The FRM employs a feedback mechanism that complementarily fuses the coarse prediction map and the feature map containing the target boundary feature information, thus achieving the best prediction results before generating the final prediction map. Experimental results on a public ultrasound breast dataset show that our network outperforms other medical image segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hkhk发布了新的文献求助10
1秒前
园艺小学生完成签到,获得积分10
2秒前
Ternura发布了新的文献求助20
2秒前
Kirin完成签到,获得积分10
2秒前
JL发布了新的文献求助10
4秒前
王一生发布了新的文献求助20
5秒前
5秒前
6秒前
宇宇宇发布了新的文献求助20
8秒前
8秒前
彳亍1117应助合适苗条采纳,获得10
8秒前
小二郎应助合适苗条采纳,获得10
8秒前
qiqi77发布了新的文献求助10
9秒前
9秒前
tae117发布了新的文献求助10
11秒前
Fly发布了新的文献求助10
13秒前
Aurora完成签到,获得积分10
13秒前
14秒前
罗又柔应助顺利的曼寒采纳,获得10
15秒前
dxwy应助公司VV采纳,获得10
16秒前
16秒前
17秒前
18秒前
laryc完成签到,获得积分10
19秒前
脑洞疼应助12334采纳,获得10
20秒前
21秒前
研友_VZG7GZ应助qiqi77采纳,获得10
21秒前
21秒前
WWlifeT发布了新的文献求助10
26秒前
十年小橘完成签到,获得积分10
28秒前
Fly完成签到,获得积分10
29秒前
大卫在分享应助zhangxr采纳,获得10
29秒前
科研通AI2S应助公司VV采纳,获得10
29秒前
31秒前
Hosea发布了新的文献求助30
31秒前
orixero应助霍巧凡采纳,获得10
31秒前
即兴完成签到,获得积分10
32秒前
32秒前
33秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796565
关于积分的说明 7820588
捐赠科研通 2452958
什么是DOI,文献DOI怎么找? 1305288
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464