Leakage detection in natural gas pipeline based on unsupervised learning and stress perception

泄漏(经济) 无监督学习 人工智能 管道运输 残余物 漏磁 计算机科学 管道(软件) 机器学习 模式识别(心理学) 工程类 算法 宏观经济学 环境工程 机械工程 经济 磁铁 程序设计语言
作者
Xingyuan Miao,Hong Zhao,Zhaoyuan Xiang
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:170: 76-88 被引量:21
标识
DOI:10.1016/j.psep.2022.12.001
摘要

Natural gas pipeline leakage can cause serious financial losses to natural gas transportation and pose accidents to the environmental safety. Currently-used supervised learning methods heavily rely on sufficient pipeline failure historical data for their training. Therefore, we propose a novel detection approach based on unsupervised learning and stress perception for determining the leakage situation in pipelines. In this study, pipeline stress signals are first acquired based on residual magnetic effect. The relationship between residual magnetic and stress is built using improved sparrow search algorithm (ISSA) and extreme learning machine (ELM). Then, the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is deployed to learn suitable features from the stress signals under the pipeline normal condition, generating high-quality stress data features. Finally, the generated stress features are supplied to the Bayesian Gaussian mixture model (BGMM). And the weighted logarithm probability (WLP) is used as the health indicator for examining pipeline status. The results demonstrate that the relative error of residual magnetic stress model is controlled within 3 %, and the WLP value of fault samples is smaller than − 100, so that the proposed method can discriminate the normal and leak conditions as well as the risk and severity of leakage. This study provides a theoretical basis and new perspective for pipeline leakage detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过白易完成签到,获得积分10
刚刚
1秒前
汉堡包应助ZYao65采纳,获得10
1秒前
fighting完成签到,获得积分20
1秒前
打打应助Cindy采纳,获得10
1秒前
小哥完成签到,获得积分10
2秒前
善学以致用应助小浣熊采纳,获得10
2秒前
Alex应助123采纳,获得20
3秒前
3秒前
JQing应助就晚安喽采纳,获得10
3秒前
霞霞发布了新的文献求助10
3秒前
科目三应助白菜也挺贵采纳,获得10
3秒前
七七发布了新的文献求助10
3秒前
圈哥完成签到,获得积分10
4秒前
4秒前
4秒前
13发布了新的文献求助10
4秒前
fighting发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
壮观的白羊完成签到 ,获得积分10
7秒前
充电宝应助zj采纳,获得10
8秒前
9秒前
9秒前
风起发布了新的文献求助10
9秒前
glycine发布了新的文献求助10
9秒前
周周发布了新的文献求助10
9秒前
yukky发布了新的文献求助10
9秒前
浮游应助masque采纳,获得20
9秒前
jason完成签到,获得积分0
10秒前
柒月樊霜完成签到,获得积分10
10秒前
Herman完成签到,获得积分10
10秒前
知性的凡双完成签到,获得积分10
10秒前
11秒前
小伊发布了新的文献求助10
11秒前
11秒前
~静完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513