Leakage detection in natural gas pipeline based on unsupervised learning and stress perception

泄漏(经济) 无监督学习 人工智能 管道运输 残余物 漏磁 计算机科学 管道(软件) 机器学习 模式识别(心理学) 工程类 算法 程序设计语言 经济 宏观经济学 环境工程 机械工程 磁铁
作者
Xingyuan Miao,Hong Zhao,Zhaoyuan Xiang
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:170: 76-88 被引量:21
标识
DOI:10.1016/j.psep.2022.12.001
摘要

Natural gas pipeline leakage can cause serious financial losses to natural gas transportation and pose accidents to the environmental safety. Currently-used supervised learning methods heavily rely on sufficient pipeline failure historical data for their training. Therefore, we propose a novel detection approach based on unsupervised learning and stress perception for determining the leakage situation in pipelines. In this study, pipeline stress signals are first acquired based on residual magnetic effect. The relationship between residual magnetic and stress is built using improved sparrow search algorithm (ISSA) and extreme learning machine (ELM). Then, the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is deployed to learn suitable features from the stress signals under the pipeline normal condition, generating high-quality stress data features. Finally, the generated stress features are supplied to the Bayesian Gaussian mixture model (BGMM). And the weighted logarithm probability (WLP) is used as the health indicator for examining pipeline status. The results demonstrate that the relative error of residual magnetic stress model is controlled within 3 %, and the WLP value of fault samples is smaller than − 100, so that the proposed method can discriminate the normal and leak conditions as well as the risk and severity of leakage. This study provides a theoretical basis and new perspective for pipeline leakage detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
书篆发布了新的文献求助10
2秒前
2秒前
顽强的小刘应助小吕小吕采纳,获得20
3秒前
嘉博学长发布了新的文献求助30
4秒前
4秒前
研友_nEjYyZ发布了新的文献求助10
4秒前
一一完成签到,获得积分10
5秒前
完美世界应助Carolna采纳,获得10
5秒前
今后应助俊秀的映之采纳,获得10
5秒前
xxx发布了新的文献求助10
5秒前
5秒前
叶黄戍发布了新的文献求助10
6秒前
6秒前
彭于彦祖应助bxhdb采纳,获得10
6秒前
6秒前
3139813319完成签到,获得积分10
7秒前
解剖六楼那小哥完成签到 ,获得积分10
7秒前
7秒前
今后应助白茶泡泡球采纳,获得10
7秒前
田様应助复杂听筠采纳,获得10
7秒前
NexusExplorer应助Juzi采纳,获得10
7秒前
CYL07发布了新的文献求助10
7秒前
aigj完成签到 ,获得积分10
8秒前
8秒前
8秒前
顺利煎蛋完成签到,获得积分10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
syvshc应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得30
10秒前
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668364
求助须知:如何正确求助?哪些是违规求助? 3226616
关于积分的说明 9770744
捐赠科研通 2936575
什么是DOI,文献DOI怎么找? 1608673
邀请新用户注册赠送积分活动 759769
科研通“疑难数据库(出版商)”最低求助积分说明 735571