Leakage detection in natural gas pipeline based on unsupervised learning and stress perception

泄漏(经济) 无监督学习 人工智能 管道运输 残余物 漏磁 计算机科学 机器学习 模式识别(心理学) 工程类 算法 磁铁 机械工程 环境工程 宏观经济学 经济
作者
Xingyuan Miao,Hong Zhao,Zhaoyuan Xiang
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:170: 76-88 被引量:8
标识
DOI:10.1016/j.psep.2022.12.001
摘要

Natural gas pipeline leakage can cause serious financial losses to natural gas transportation and pose accidents to the environmental safety. Currently-used supervised learning methods heavily rely on sufficient pipeline failure historical data for their training. Therefore, we propose a novel detection approach based on unsupervised learning and stress perception for determining the leakage situation in pipelines. In this study, pipeline stress signals are first acquired based on residual magnetic effect. The relationship between residual magnetic and stress is built using improved sparrow search algorithm (ISSA) and extreme learning machine (ELM). Then, the Wasserstein generative adversarial network with gradient penalty (WGAN-GP) is deployed to learn suitable features from the stress signals under the pipeline normal condition, generating high-quality stress data features. Finally, the generated stress features are supplied to the Bayesian Gaussian mixture model (BGMM). And the weighted logarithm probability (WLP) is used as the health indicator for examining pipeline status. The results demonstrate that the relative error of residual magnetic stress model is controlled within 3 %, and the WLP value of fault samples is smaller than − 100, so that the proposed method can discriminate the normal and leak conditions as well as the risk and severity of leakage. This study provides a theoretical basis and new perspective for pipeline leakage detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂阅读发布了新的文献求助10
刚刚
1秒前
WJ完成签到,获得积分10
1秒前
yejian完成签到,获得积分10
1秒前
sunsaint发布了新的文献求助10
1秒前
1秒前
jacob258发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
zee发布了新的文献求助10
5秒前
CodeCraft应助howl采纳,获得10
7秒前
疯狂老登发布了新的文献求助10
7秒前
流子发布了新的文献求助10
8秒前
panda发布了新的文献求助10
8秒前
菜狗发布了新的文献求助10
8秒前
香蕉觅云应助慕容迎松采纳,获得10
14秒前
菜狗完成签到,获得积分20
16秒前
在水一方应助myit采纳,获得10
21秒前
mdjsf完成签到,获得积分10
23秒前
科研通AI2S应助疯狂老登采纳,获得10
25秒前
852应助陶醉觅夏采纳,获得10
25秒前
26秒前
小小小新关注了科研通微信公众号
26秒前
27秒前
27秒前
30秒前
搜集达人应助曹帅采纳,获得10
30秒前
孝铮发布了新的文献求助10
32秒前
33秒前
lulu猪发布了新的文献求助10
33秒前
34秒前
开朗渊思发布了新的文献求助10
34秒前
lemonfang发布了新的文献求助10
35秒前
海绵树完成签到 ,获得积分10
36秒前
36秒前
华仔应助孝铮采纳,获得10
36秒前
出金多多发布了新的文献求助10
38秒前
超级无心完成签到,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023