Protection against Chemical Warfare Agents and Biological Threats Using Metal–Organic Frameworks as Active Layers

化学战剂 金属有机骨架 纳米技术 材料科学 化学战 化学 生化工程 有机化学 工程类 吸附 政治学 法学
作者
Kaikai Ma,Yuk Ha Cheung,Kent O. Kirlikovali,Xiaoliang Wang,Timur İslamoğlu,John H. Xin,Omar K. Farha
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (2): 168-179 被引量:26
标识
DOI:10.1021/accountsmr.2c00200
摘要

The SARS-CoV-2 pandemic outbreak and the unfortunate misuse of toxic chemical warfare agents (CWAs) highlight the importance of developing functional materials to protect against these chemical and pathogen threats. Metal–organic frameworks (MOFs), which comprise a tunable class of crystalline porous materials built from inorganic nodes and organic linkers, have emerged as a class of heterogeneous catalysts capable of rapid detoxification of multiple classes of these harmful chemical or biological hazards. In particular, zirconium-based MOFs (Zr-MOFs) feature Lewis acidic nodes that serve as active sites for a wide range of catalytic reactions, including the hydrolysis of organophosphorus nerve agents within seconds in basic aqueous solutions. In addition, postsynthetic modification of Zr-MOFs enables the release of active species capable of reacting with and deactivating harmful pathogens. Despite this impressive performance, utilizing Zr-MOFs in powder form is not practical for application in masks or protective uniforms.To address this challenge, our team sought to develop MOF/fiber composite systems that could be adapted for use under realistic operating conditions to protect civilians, military personnel, and first responders from harmful pathogens and chemical warfare agents. Over the last several years, our group has designed and fabricated reactive and biocidal MOF/fiber composites that effectively capture and deactivate these toxic species. In this Account, we describe the evolution of these porous and reactive MOF/fiber composites and focus on key design challenges and considerations.First, we devised a scalable method for the integration of Zr-MOFs onto textile substrates using aqueous precursor solutions and without using pretreated textiles, highlighting the potential scalability of this method. Moving beyond standard textiles, we also developed a microbial synthesis strategy to prepare hierarchically porous MOF/bacterial cellulose nanofiber composite sponges that can both capture and detoxify nerve agents when exposed to contaminated gas flows. The mass loading of the MOF in the nanofibrous composite sponge is up to 90%, affording higher work capacities compared to those of textile-fiber-based composites with relatively lower MOF loadings. Next, we demonstrated that heterogeneous polymeric bases are suitable replacements for volatile liquid bases typically used in solution-phase reactions, and we showed that these composite systems are capable of effectively hydrolyzing nerve agents in the solid state by using only water that is present as humidity. Moreover, incorporating a reactive dye precursor into the composite affords a dual function sensing and detoxifying material that changes color from white to orange upon reaction with the byproduct following nerve agent hydrolysis, demonstrating the versatility of this platform for use in decontamination applications. We then created chlorine-loaded MOF/fiber composites that act as biocidal and reactive textiles that are capable of not only detoxifying sulfur-mustard-based chemical warfare agents and simulants but also deactivating both bacteria and the SARS-CoV-2 virus within minutes of exposure. Finally, we synthesized a mixed-metal Ti/Zr-MOF coating on cotton fibers to afford a photoactive biocidal cloth that shows fast and broad-spectrum biocidal performance against viruses and Gram-positive and Gram-negative bacteria under visible light irradiation.Given the tunable, multifunctional nature of these MOF/fiber composites, we believe that this Account will offer new insights for the rational design and preparation of functional MOF/fiber composites and pave the way toward the development of next-generation reactive and protective textiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bringlingling完成签到,获得积分10
刚刚
杨譮完成签到,获得积分10
刚刚
传奇3应助调皮的达采纳,获得10
刚刚
小菜白完成签到 ,获得积分10
刚刚
直率的宛海完成签到,获得积分10
刚刚
1秒前
asdzsx发布了新的文献求助10
1秒前
1秒前
Pepsi完成签到,获得积分10
1秒前
ellieou发布了新的文献求助10
1秒前
1秒前
乐观松思完成签到,获得积分10
1秒前
2秒前
谨言完成签到 ,获得积分10
3秒前
丁莞完成签到,获得积分10
3秒前
斗牛的番茄完成签到 ,获得积分10
4秒前
吴中雪发布了新的文献求助10
4秒前
4秒前
杨譮发布了新的文献求助10
4秒前
材料小白发布了新的文献求助10
4秒前
Pepsi发布了新的文献求助10
5秒前
乐观忆灵完成签到,获得积分10
6秒前
卷王完成签到,获得积分10
7秒前
脑残骑士老张完成签到,获得积分10
7秒前
bringlingling发布了新的文献求助10
7秒前
思源应助酸奶燕麦球采纳,获得10
8秒前
莫失莫忘完成签到,获得积分10
8秒前
8秒前
Kenzonvay完成签到,获得积分10
8秒前
9秒前
mhxu完成签到,获得积分10
9秒前
ferritin完成签到 ,获得积分10
9秒前
guanzhuang完成签到,获得积分10
9秒前
秋山伊夫完成签到,获得积分10
9秒前
LLHH发布了新的文献求助10
9秒前
粗犷的惋清完成签到,获得积分10
10秒前
清秀的煜城完成签到,获得积分10
10秒前
10秒前
cs完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661418
求助须知:如何正确求助?哪些是违规求助? 3222442
关于积分的说明 9745787
捐赠科研通 2932029
什么是DOI,文献DOI怎么找? 1605426
邀请新用户注册赠送积分活动 757898
科研通“疑难数据库(出版商)”最低求助积分说明 734576