Distributed Training for Deep Learning Models On An Edge Computing Network Using Shielded Reinforcement Learning

计算机科学 强化学习 地铁列车时刻表 分布式计算 节点(物理) 边缘设备 仿真 边缘计算 调度(生产过程) 瓶颈 GSM演进的增强数据速率 计算机网络 人工智能 云计算 数学优化 工程类 嵌入式系统 操作系统 经济 结构工程 经济增长 数学
作者
Tanmoy Sen,Haiying Shen
标识
DOI:10.1109/icdcs54860.2022.00062
摘要

With the emergence of edge devices along with their local computation advantage over the cloud, distributed deep learning (DL) training on edge nodes becomes promising. In such a method, the cluster head of a cluster of edge nodes schedules all the DL training jobs from the cluster nodes. Using such a centralized scheduling method, the cluster head knows all the loads of the cluster nodes, which can avoid overloading the cluster nodes, but the head itself may become overloaded. To handle this problem, we first propose a multi-agent RL (MARL) system that enables each edge node to schedule its own jobs using RL. However, without the coordination between the nodes, action collision may occur, in which multiple nodes may schedule tasks to the same node and make it overloaded. To avoid these problems, we propose a system called Shielded ReinfOrcement learning (RL) based DL training on Edges (SROLE). In SROLE, each edge node schedules its own jobs using multi-agent RL. The shield deployed in a node checks action collisions and provides alternative actions to avoid the collisions. As the central shield node for the entire cluster may become a bottleneck, we further propose a decentralized shielding method, in which different shields are responsible for different regions in the cluster and they coordinate to avoid action collisions on the region boundaries. Our container-based emulation experiments show that SROLE reduces training time by up to 59% with 29% lower median resource utilization and reduces the number of action collisions by up to 48% compared to multi-agent RL and the centralized RL. Our real device experiments show that SROLE still reduces the training time by up to 53% with 28% lower median resource utilization than multi-agent RL and the centralized RL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PhD_Ren完成签到,获得积分10
刚刚
yangz发布了新的文献求助10
1秒前
saxg_hu完成签到 ,获得积分10
1秒前
yitonghan完成签到,获得积分10
2秒前
木乙完成签到,获得积分10
2秒前
流星发布了新的文献求助10
2秒前
巨大的小侠完成签到,获得积分10
2秒前
2秒前
搜集达人应助白瑾采纳,获得10
3秒前
aa完成签到,获得积分10
3秒前
Yu发布了新的文献求助10
3秒前
无极微光应助xiaohuang采纳,获得20
3秒前
3秒前
科研狗完成签到,获得积分10
3秒前
追寻翩跹完成签到,获得积分10
3秒前
Qin完成签到,获得积分10
3秒前
大饼完成签到,获得积分10
4秒前
田様应助Freelover采纳,获得10
4秒前
这个大头张呀完成签到,获得积分10
5秒前
coconut完成签到,获得积分10
5秒前
小cc完成签到 ,获得积分10
5秒前
Emma完成签到 ,获得积分10
5秒前
JamesPei应助看文献了采纳,获得10
5秒前
龚小丽完成签到,获得积分10
5秒前
5秒前
6秒前
我是老大应助葛力采纳,获得10
6秒前
6秒前
Tacikdokand完成签到,获得积分10
6秒前
yzy完成签到,获得积分10
6秒前
三水完成签到,获得积分10
6秒前
发顺丰发布了新的文献求助10
6秒前
苹果树下的懒洋洋完成签到 ,获得积分10
7秒前
灵巧的之瑶完成签到,获得积分10
7秒前
小灰灰完成签到,获得积分0
7秒前
光亮青柏完成签到 ,获得积分10
8秒前
爱听歌依波完成签到 ,获得积分10
8秒前
白瑾完成签到,获得积分10
8秒前
9秒前
小周完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645392
求助须知:如何正确求助?哪些是违规求助? 4768659
关于积分的说明 15028508
捐赠科研通 4803961
什么是DOI,文献DOI怎么找? 2568583
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485551