已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distributed Training for Deep Learning Models On An Edge Computing Network Using Shielded Reinforcement Learning

计算机科学 强化学习 地铁列车时刻表 分布式计算 节点(物理) 边缘设备 仿真 边缘计算 调度(生产过程) 瓶颈 GSM演进的增强数据速率 计算机网络 人工智能 云计算 数学优化 工程类 嵌入式系统 操作系统 经济 结构工程 经济增长 数学
作者
Tanmoy Sen,Haiying Shen
标识
DOI:10.1109/icdcs54860.2022.00062
摘要

With the emergence of edge devices along with their local computation advantage over the cloud, distributed deep learning (DL) training on edge nodes becomes promising. In such a method, the cluster head of a cluster of edge nodes schedules all the DL training jobs from the cluster nodes. Using such a centralized scheduling method, the cluster head knows all the loads of the cluster nodes, which can avoid overloading the cluster nodes, but the head itself may become overloaded. To handle this problem, we first propose a multi-agent RL (MARL) system that enables each edge node to schedule its own jobs using RL. However, without the coordination between the nodes, action collision may occur, in which multiple nodes may schedule tasks to the same node and make it overloaded. To avoid these problems, we propose a system called Shielded ReinfOrcement learning (RL) based DL training on Edges (SROLE). In SROLE, each edge node schedules its own jobs using multi-agent RL. The shield deployed in a node checks action collisions and provides alternative actions to avoid the collisions. As the central shield node for the entire cluster may become a bottleneck, we further propose a decentralized shielding method, in which different shields are responsible for different regions in the cluster and they coordinate to avoid action collisions on the region boundaries. Our container-based emulation experiments show that SROLE reduces training time by up to 59% with 29% lower median resource utilization and reduces the number of action collisions by up to 48% compared to multi-agent RL and the centralized RL. Our real device experiments show that SROLE still reduces the training time by up to 53% with 28% lower median resource utilization than multi-agent RL and the centralized RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
我爱科研完成签到 ,获得积分10
4秒前
伯爵的猫完成签到,获得积分10
4秒前
6秒前
无奈的海白关注了科研通微信公众号
10秒前
解语花发布了新的文献求助10
10秒前
大模型应助Aman采纳,获得10
14秒前
只要平凡发布了新的文献求助10
15秒前
含蓄梦安完成签到,获得积分10
16秒前
停云濛濛完成签到,获得积分20
18秒前
19秒前
21秒前
22秒前
24秒前
26秒前
ZZICU发布了新的文献求助30
26秒前
ZZICU完成签到,获得积分10
31秒前
共享精神应助赵心宇采纳,获得10
31秒前
六初完成签到 ,获得积分10
32秒前
bxl完成签到,获得积分10
32秒前
34秒前
AlexanderChen完成签到,获得积分20
35秒前
PL发布了新的文献求助10
38秒前
haha完成签到 ,获得积分10
39秒前
Miracle_wh关注了科研通微信公众号
39秒前
AlexanderChen发布了新的文献求助10
39秒前
40秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
Hello应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
coolkid应助科研通管家采纳,获得10
42秒前
42秒前
隐形曼青应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
43秒前
49秒前
叫一只烤鸭完成签到,获得积分10
49秒前
51秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749