Distributed Training for Deep Learning Models On An Edge Computing Network Using Shielded Reinforcement Learning

计算机科学 强化学习 地铁列车时刻表 分布式计算 节点(物理) 边缘设备 仿真 边缘计算 调度(生产过程) 瓶颈 GSM演进的增强数据速率 计算机网络 人工智能 云计算 数学优化 工程类 嵌入式系统 操作系统 经济 结构工程 经济增长 数学
作者
Tanmoy Sen,Haiying Shen
标识
DOI:10.1109/icdcs54860.2022.00062
摘要

With the emergence of edge devices along with their local computation advantage over the cloud, distributed deep learning (DL) training on edge nodes becomes promising. In such a method, the cluster head of a cluster of edge nodes schedules all the DL training jobs from the cluster nodes. Using such a centralized scheduling method, the cluster head knows all the loads of the cluster nodes, which can avoid overloading the cluster nodes, but the head itself may become overloaded. To handle this problem, we first propose a multi-agent RL (MARL) system that enables each edge node to schedule its own jobs using RL. However, without the coordination between the nodes, action collision may occur, in which multiple nodes may schedule tasks to the same node and make it overloaded. To avoid these problems, we propose a system called Shielded ReinfOrcement learning (RL) based DL training on Edges (SROLE). In SROLE, each edge node schedules its own jobs using multi-agent RL. The shield deployed in a node checks action collisions and provides alternative actions to avoid the collisions. As the central shield node for the entire cluster may become a bottleneck, we further propose a decentralized shielding method, in which different shields are responsible for different regions in the cluster and they coordinate to avoid action collisions on the region boundaries. Our container-based emulation experiments show that SROLE reduces training time by up to 59% with 29% lower median resource utilization and reduces the number of action collisions by up to 48% compared to multi-agent RL and the centralized RL. Our real device experiments show that SROLE still reduces the training time by up to 53% with 28% lower median resource utilization than multi-agent RL and the centralized RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏寒珊完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
轩辕沛柔发布了新的文献求助10
4秒前
4秒前
沐秋发布了新的文献求助10
5秒前
5秒前
5秒前
hengyuan完成签到,获得积分20
5秒前
阳佟曼云发布了新的文献求助10
5秒前
5秒前
搜集达人应助健忘丹珍采纳,获得10
6秒前
材料生发布了新的文献求助10
6秒前
Aaman发布了新的文献求助30
6秒前
kingfly2010完成签到,获得积分10
6秒前
7秒前
问你有没有发挥完成签到,获得积分10
7秒前
lihongchi发布了新的文献求助10
8秒前
8秒前
CHH完成签到,获得积分10
8秒前
8秒前
8秒前
1234发布了新的文献求助10
9秒前
爆米花应助hengyuan采纳,获得10
10秒前
热心豆芽完成签到 ,获得积分10
10秒前
10秒前
11秒前
Leon应助迪丽热巴采纳,获得10
12秒前
whisper完成签到,获得积分10
12秒前
Jasper应助姜橙鹭采纳,获得10
12秒前
12秒前
叶子发布了新的文献求助10
12秒前
SYLH应助道尔采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
ecco2004发布了新的文献求助10
14秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470685
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9084950
捐赠科研通 2754196
什么是DOI,文献DOI怎么找? 1511311
邀请新用户注册赠送积分活动 698363
科研通“疑难数据库(出版商)”最低求助积分说明 698253