Deep learning model for diagnosing early gastric cancer using preoperative computed tomography images

医学 粘膜下层 接收机工作特性 阶段(地层学) 深度学习 癌症 淋巴结 放射科 计算机断层摄影术 卷积神经网络 人工智能 内科学 计算机科学 生物 古生物学
作者
Qingwen Zeng,Zongfeng Feng,Yanyan Zhu,Yang Zhang,Xufeng Shu,Ahao Wu,Lianghua Luo,Yi Cao,Jianbo Xiong,Hong Li,Fuqing Zhou,Zhigang Jie,Yi Tu,Zhengrong Li
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:2
标识
DOI:10.3389/fonc.2022.1065934
摘要

Background Early gastric cancer (EGC) is defined as a lesion restricted to the mucosa or submucosa, independent of size or evidence of regional lymph node metastases. Although computed tomography (CT) is the main technique for determining the stage of gastric cancer (GC), the accuracy of CT for determining tumor invasion of EGC was still unsatisfactory by radiologists. In this research, we attempted to construct an AI model to discriminate EGC in portal venous phase CT images. Methods We retrospectively collected 658 GC patients from the first affiliated hospital of Nanchang university, and divided them into training and internal validation cohorts with a ratio of 8:2. As the external validation cohort, 93 GC patients were recruited from the second affiliated hospital of Soochow university. We developed several prediction models based on various convolutional neural networks, and compared their predictive performance. Results The deep learning model based on the ResNet101 neural network represented sufficient discrimination of EGC. In two validation cohorts, the areas under the curves (AUCs) for the receiver operating characteristic (ROC) curves were 0.993 (95% CI: 0.984-1.000) and 0.968 (95% CI: 0.935-1.000), respectively, and the accuracy was 0.946 and 0.914. Additionally, the deep learning model can also differentiate between mucosa and submucosa tumors of EGC. Conclusions These results suggested that deep learning classifiers have the potential to be used as a screening tool for EGC, which is crucial in the individualized treatment of EGC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
1秒前
大吃一筐馒头完成签到,获得积分10
1秒前
2秒前
悠哈特浓奶糖完成签到,获得积分10
4秒前
英俊的铭应助李会雪采纳,获得10
5秒前
Zephyr发布了新的文献求助10
6秒前
听雨的猫完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
RUIT完成签到,获得积分20
10秒前
11秒前
13秒前
一段段完成签到,获得积分10
14秒前
shaw完成签到,获得积分10
14秒前
YMing发布了新的文献求助10
15秒前
16秒前
16秒前
一颗溏心蛋完成签到,获得积分10
17秒前
深情的雪糕完成签到 ,获得积分10
17秒前
17秒前
lzl完成签到,获得积分10
17秒前
Orange应助陈木木采纳,获得10
19秒前
小羊烧鸡发布了新的文献求助10
19秒前
passion完成签到 ,获得积分20
19秒前
Jia发布了新的文献求助10
19秒前
细心蛋挞完成签到 ,获得积分10
20秒前
周鑫鑫周发布了新的文献求助10
22秒前
23秒前
神勇秋蝶发布了新的文献求助10
23秒前
蜗牛完成签到,获得积分10
26秒前
27秒前
yaoeer发布了新的文献求助10
27秒前
27秒前
Lars汉堡发布了新的文献求助10
27秒前
有本事1234完成签到,获得积分10
27秒前
28秒前
充电宝应助鲁酷采纳,获得10
28秒前
28秒前
28秒前
所所应助刘子豪采纳,获得10
29秒前
淡淡的硬币完成签到 ,获得积分10
29秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620720
求助须知:如何正确求助?哪些是违规求助? 4705277
关于积分的说明 14931056
捐赠科研通 4762648
什么是DOI,文献DOI怎么找? 2551126
邀请新用户注册赠送积分活动 1513769
关于科研通互助平台的介绍 1474655