亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning model for diagnosing early gastric cancer using preoperative computed tomography images

医学 粘膜下层 接收机工作特性 阶段(地层学) 深度学习 癌症 淋巴结 放射科 计算机断层摄影术 卷积神经网络 人工智能 内科学 计算机科学 生物 古生物学
作者
Qingwen Zeng,Zongfeng Feng,Yanyan Zhu,Yang Zhang,Xufeng Shu,Ahao Wu,Lianghua Luo,Yi Cao,Jianbo Xiong,Hong Li,Fuqing Zhou,Zhigang Jie,Yi Tu,Zhengrong Li
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:2
标识
DOI:10.3389/fonc.2022.1065934
摘要

Background Early gastric cancer (EGC) is defined as a lesion restricted to the mucosa or submucosa, independent of size or evidence of regional lymph node metastases. Although computed tomography (CT) is the main technique for determining the stage of gastric cancer (GC), the accuracy of CT for determining tumor invasion of EGC was still unsatisfactory by radiologists. In this research, we attempted to construct an AI model to discriminate EGC in portal venous phase CT images. Methods We retrospectively collected 658 GC patients from the first affiliated hospital of Nanchang university, and divided them into training and internal validation cohorts with a ratio of 8:2. As the external validation cohort, 93 GC patients were recruited from the second affiliated hospital of Soochow university. We developed several prediction models based on various convolutional neural networks, and compared their predictive performance. Results The deep learning model based on the ResNet101 neural network represented sufficient discrimination of EGC. In two validation cohorts, the areas under the curves (AUCs) for the receiver operating characteristic (ROC) curves were 0.993 (95% CI: 0.984-1.000) and 0.968 (95% CI: 0.935-1.000), respectively, and the accuracy was 0.946 and 0.914. Additionally, the deep learning model can also differentiate between mucosa and submucosa tumors of EGC. Conclusions These results suggested that deep learning classifiers have the potential to be used as a screening tool for EGC, which is crucial in the individualized treatment of EGC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
笨笨芯完成签到,获得积分10
6秒前
李娇完成签到 ,获得积分10
7秒前
Dritsw应助文玉梅采纳,获得50
8秒前
英姑应助tdtk采纳,获得10
20秒前
共享精神应助子车凡采纳,获得10
26秒前
mmyhn发布了新的文献求助10
27秒前
28秒前
冰西瓜完成签到 ,获得积分0
39秒前
47秒前
58秒前
59秒前
feifei完成签到,获得积分10
1分钟前
feifei发布了新的文献求助10
1分钟前
子车凡发布了新的文献求助10
1分钟前
1分钟前
Ying发布了新的文献求助10
1分钟前
子车凡完成签到,获得积分10
1分钟前
Ying完成签到,获得积分10
1分钟前
1分钟前
今后应助000采纳,获得10
1分钟前
1分钟前
2分钟前
科研小白完成签到,获得积分10
2分钟前
azhou176完成签到,获得积分10
2分钟前
2分钟前
2分钟前
仙女完成签到 ,获得积分10
2分钟前
花花完成签到,获得积分10
2分钟前
欣喜念梦完成签到,获得积分10
2分钟前
2分钟前
000发布了新的文献求助10
2分钟前
pegasus0802完成签到 ,获得积分10
2分钟前
2分钟前
000完成签到,获得积分10
2分钟前
小枣完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
研友_VZG7GZ应助皮崇知采纳,获得10
3分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965622
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155441
捐赠科研通 3245347
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188