Unrevealing Temporal Mechanoluminescence Behaviors at High Frequency via Piezoelectric Actuation

机械容积 材料科学 频率调制 调制(音乐) 压电 激发 低频 振幅 频率响应 荧光粉 声学 光电子学 光学 无线电频率 物理 复合材料 计算机科学 电信 电气工程 工程类 量子力学
作者
Tianhong Zhou,Haisheng Chen,Jiaxing Guo,Yanan Zhao,Xiaona Du,Qingyi Zhang,Wenwen Chen,Taiyu Bian,Zhi Zhang,Jiaying Shen,Weiwei Liu,Yang Zhang,Zhenping Wu,Jianhua Hao
出处
期刊:Small [Wiley]
卷期号:19 (8) 被引量:11
标识
DOI:10.1002/smll.202207089
摘要

Mechanoluminescence (ML) materials present widespread applications. Empirically, modulation for a given ML material is achieved by application of programmed mechanical actuation with different amplitude, repetition velocity and frequency. However, to date modulation on the ML is very limited within several to a few hundred hertz low-frequency actuation range, due to the paucity of high-frequency mechanical excitation apparatus. The universality of temporal behavior and frequency response is an important aspect of ML phenomena, and serves as the impetus for much of its applications. Here, we push the study on ML into high-frequency range (∼250 kHz) by combining with piezoelectric actuators. Two representative ML ZnS:Mn and ZnS:Cu, Al phosphors were chosen as the research objects. Time-resolved ML of ZnS:Mn and ZnS:Cu, Al shows unrevealed frequency-dependent saturation and quenching, which is associated with the dynamic processes of traps. From the point of applications, this study sets the cut-off frequency for ML sensing. Moreover, by in-situ tuning the strain frequency, ZnS:Mn exhibits reversible frequency-induced broad red-shift into near-infrared range. These findings offer keen insight into the photophysics nature of ML and also broaden the physical modulation of ML by locally adjusting the excitation frequency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迪迦驳回了所所应助
1秒前
猪猪hero发布了新的文献求助10
1秒前
热心芷烟完成签到,获得积分10
1秒前
1秒前
敏捷的猪猪侠完成签到,获得积分10
2秒前
2秒前
2秒前
咕噜仔发布了新的文献求助50
2秒前
诚c发布了新的文献求助10
3秒前
3秒前
饭宝发布了新的文献求助10
4秒前
SciGPT应助大胆的期待采纳,获得10
4秒前
奋斗夏烟完成签到,获得积分20
4秒前
气泡水完成签到 ,获得积分10
4秒前
rosy完成签到,获得积分10
5秒前
rjy完成签到 ,获得积分10
5秒前
6秒前
沙111发布了新的文献求助10
6秒前
MADKAI发布了新的文献求助10
6秒前
7秒前
zhoull完成签到 ,获得积分10
7秒前
7秒前
7秒前
学术蝗虫发布了新的文献求助10
7秒前
aurora完成签到,获得积分10
8秒前
bopbopbaby发布了新的文献求助200
8秒前
sll完成签到,获得积分10
8秒前
犹豫的一斩应助迅速冰岚采纳,获得10
8秒前
聂裕铭完成签到 ,获得积分10
8秒前
谦让成协完成签到,获得积分10
9秒前
9秒前
大个应助侦察兵采纳,获得10
9秒前
科研通AI5应助猪猪hero采纳,获得10
9秒前
9秒前
9秒前
WilsonT完成签到,获得积分10
9秒前
SDS发布了新的文献求助10
10秒前
LLL发布了新的文献求助10
10秒前
爆米花应助娜行采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678