木材工业
鉴定(生物学)
生产(经济)
木材加工
实木
工程木材
木材生产
木工
过程(计算)
工艺工程
产量(工程)
质量(理念)
法律工程学
制浆造纸工业
人工智能
计算机科学
材料科学
模式识别(心理学)
工程类
环境科学
复合材料
机械工程
农林复合经营
森林经营
生态学
哲学
植物
认识论
图层(电子)
生物
经济
宏观经济学
操作系统
作者
Yu-Tang Chen,Chengshuo Sun,Zirui Ren,Na Bin
出处
期刊:Bioresources
[BioResources]
日期:2022-12-02
卷期号:18 (1)
被引量:11
标识
DOI:10.15376/biores.18.1.chen
摘要
Wood utilisation is an important factor affecting production costs, but the combined utilisation rate of wood is generally only 50 to 70%. During the production process, the rejection scheme of wood defects is one of the most important factors affecting the wood yield. This paper provides an overview of the main wood defects affecting wood quality, introduces techniques for detecting and identifying wood defects using different technologies, highlights the more widely used image recognition-based wood surface defect identification methods, and presents three advanced wood defect detection and identification equipment. In view of the relatively fixed wood defect recognition requirements in wood processing production, it is proposed that wood defect recognition technology should be further developed toward deep learning to improve the accuracy and efficiency of wood defect recognition.
科研通智能强力驱动
Strongly Powered by AbleSci AI