跨临界分岔
鞍结分岔
数学
博格达诺夫-塔肯分岔
阿利效应
分叉理论的生物学应用
分叉
同宿分支
分岔图
干草叉分叉
无限周期分岔
分岔理论
数学分析
倍周期分岔
应用数学
统计物理学
非线性系统
物理
人口
量子力学
人口学
社会学
作者
S. M. Salman,A. A. Elsadany
标识
DOI:10.1142/s1793524522501364
摘要
This paper investigates multiple bifurcations analyses and strong resonances of the Bazykin–Berezovskaya predator–prey model in depth using analytical and numerical bifurcation analysis. The stability conditions of fixed points, codim-1 and codim-2 bifurcations to include multiple and generic bifurcations are studied. This model exhibits transcritical, flip, Neimark–Sacker, and [Formula: see text], [Formula: see text], [Formula: see text] strong resonances. The normal form coefficients and their scenarios for each bifurcation are examined by using the normal form theorem and bifurcation theory. For each bifurcation, various types of critical states are calculated, such as potential transformations between the one-parameter bifurcation point and different bifurcation points obtained from the two-parameter bifurcation point. To validate our analytical findings, the bifurcation curves of fixed points are determined by using MatcontM.
科研通智能强力驱动
Strongly Powered by AbleSci AI