Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data

班级(哲学) 人工智能 机器学习 稀缺 二进制数 二进制数据 二元分类 计算机科学 支持向量机 数学 经济 算术 微观经济学
作者
Chang‐Hun Kim,Jaeseong Jeong,Jinhee Choi
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:35 (12): 2219-2226 被引量:11
标识
DOI:10.1021/acs.chemrestox.2c00189
摘要

The development of toxicity classification models using the ToxCast database has been extensively studied. Machine learning approaches are effective in identifying the bioactivity of untested chemicals. However, ToxCast assays differ in the amount of data and degree of class imbalance (CI). Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. In this study, the effects of CI and data scarcity (DS) on the performance of binary classification models were investigated using ToxCast bioassay data. An assay matrix based on CI and DS was prepared for 335 assays with biologically intended target information, and 28 CI assays and 3 DS assays were selected. Thirty models established by combining five molecular fingerprints (i.e., Morgan, MACCS, RDKit, Pattern, and Layered) and six algorithms [i.e., gradient boosting tree, random forest (RF), multi-layered perceptron, k-nearest neighbor, logistic regression, and naive Bayes] were trained using the selected assay data set. Of the 30 trained models, MACCS-RF showed the best performance and thus was selected for analyses of the effects of CI and DS. Results showed that recall and F1 were significantly lower when training with the CI assays than with the DS assays. In addition, hyperparameter tuning of the RF algorithm significantly improved F1 on CI assays. This study provided a basis for developing a toxicity classification model with improved performance by evaluating the effects of data set characteristics. This study also emphasized the importance of using appropriate evaluation metrics and tuning hyperparameters in model development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111应助旺德福采纳,获得10
刚刚
一只鱼完成签到,获得积分10
3秒前
hpppc发布了新的文献求助10
4秒前
ccccchen发布了新的文献求助10
4秒前
煜晟完成签到 ,获得积分10
4秒前
5秒前
5秒前
沙猛完成签到,获得积分10
8秒前
楚文强发布了新的文献求助10
8秒前
无花果应助如意的小海豚采纳,获得10
9秒前
xiaolu发布了新的文献求助10
10秒前
KJ完成签到,获得积分10
11秒前
上善若水完成签到 ,获得积分10
11秒前
惠慧完成签到,获得积分20
14秒前
iii发布了新的文献求助10
17秒前
xingcheng完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
xujunjie发布了新的文献求助30
21秒前
科研通AI5应助harvey采纳,获得10
23秒前
kaiser_e6完成签到,获得积分10
23秒前
小佛爷完成签到 ,获得积分10
23秒前
sun发布了新的文献求助10
24秒前
25秒前
sun发布了新的文献求助30
26秒前
陌上之心完成签到 ,获得积分10
27秒前
wwx发布了新的文献求助10
27秒前
背后访风完成签到 ,获得积分10
29秒前
32秒前
hpppc完成签到,获得积分10
34秒前
limin完成签到,获得积分10
35秒前
猪猪hero发布了新的文献求助10
37秒前
taotao完成签到,获得积分10
38秒前
qingxinhuo完成签到 ,获得积分10
39秒前
39秒前
NexusExplorer应助失眠的水云采纳,获得10
39秒前
没有答案发布了新的文献求助80
41秒前
wwx完成签到,获得积分20
41秒前
stonerbai完成签到,获得积分10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737290
求助须知:如何正确求助?哪些是违规求助? 3281175
关于积分的说明 10023282
捐赠科研通 2997875
什么是DOI,文献DOI怎么找? 1644872
邀请新用户注册赠送积分活动 782227
科研通“疑难数据库(出版商)”最低求助积分说明 749731