A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans

分割 计算机科学 人工智能 双翼飞机 块(置换群论) 残余物 尺度空间分割 计算机视觉 特征(语言学) 模式识别(心理学) 图像分割 数学 算法 哲学 航空航天工程 工程类 几何学 语言学
作者
Ying Chen,Cheng Zheng,Taohui Zhou,Longfeng Feng,Lan Liu,Qiao Zeng,Guoqing Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106421-106421 被引量:26
标识
DOI:10.1016/j.compbiomed.2022.106421
摘要

Liver tumours are diseases with high morbidity and high deterioration probabilities, and accurate liver area segmentation from computed tomography (CT) scans is a prerequisite for quick tumour diagnosis. While 2D network segmentation methods can perform segmentation with lower device performance requirements, they often discard the rich 3D spatial information contained in CT scans, limiting their segmentation accuracy. Hence, a deep residual attention-based U-shaped network (DRAUNet) with a biplane joint method for liver segmentation is proposed in this paper, where the biplane joint method introduces coronal CT slices to assist the transverse slices with segmentation, incorporating more 3D spatial information into the segmentation results to improve the segmentation performance of the network. Additionally, a novel deep residual block (DR block) and dual-effect attention module (DAM) are introduced in DRAUNet, where the DR block has deeper layers and two shortcut paths. The DAM efficiently combines the correlations of feature channels and the spatial locations of feature maps. The DRAUNet with the biplane joint method is tested on three datasets, Liver Tumour Segmentation (LiTS), 3D Image Reconstruction for Comparison of Algorithms Database (3DIRCADb), and Segmentation of the Liver Competition 2007 (Sliver07), and it achieves 97.3%, 97.4%, and 96.9% Dice similarity coefficients (DSCs) for liver segmentation, respectively, outperforming most state-of-the-art networks; this strongly demonstrates the segmentation performance of DRAUNet and the ability of the biplane joint method to obtain 3D spatial information from 3D images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助科研通管家采纳,获得10
刚刚
昏睡的蟠桃应助科研通管家采纳,获得200
刚刚
浮游应助科研通管家采纳,获得10
刚刚
一叶知秋应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
所所应助唐唐采纳,获得10
刚刚
1秒前
Solarenergy完成签到,获得积分0
4秒前
健壮的白桃完成签到,获得积分10
5秒前
晚风完成签到,获得积分10
6秒前
6秒前
星辰大海应助健壮的翠安采纳,获得30
7秒前
顾矜应助认真的思枫采纳,获得10
7秒前
Sun1c7发布了新的文献求助10
8秒前
vvvg发布了新的文献求助30
8秒前
9秒前
鲜艳的芹发布了新的文献求助10
10秒前
无语的钢铁侠完成签到,获得积分10
13秒前
Hui_2023发布了新的文献求助30
13秒前
lvbowen发布了新的文献求助10
14秒前
wx完成签到,获得积分10
16秒前
chx2256120完成签到,获得积分10
16秒前
一一完成签到,获得积分20
16秒前
gzgljh完成签到,获得积分10
17秒前
19秒前
19秒前
吕亦寒完成签到,获得积分10
21秒前
believe完成签到,获得积分10
22秒前
谢佳霖完成签到,获得积分10
24秒前
吕亦寒发布了新的文献求助10
24秒前
yyisme完成签到,获得积分10
27秒前
雪时晴发布了新的文献求助10
27秒前
路漫漫其修远兮完成签到 ,获得积分10
28秒前
可爱的函函应助lvbowen采纳,获得10
28秒前
科研通AI6应助lvbowen采纳,获得10
28秒前
小蘑菇应助lvbowen采纳,获得10
29秒前
科研通AI6应助lvbowen采纳,获得10
29秒前
syt完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866