A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans

分割 计算机科学 人工智能 双翼飞机 块(置换群论) 残余物 尺度空间分割 计算机视觉 特征(语言学) 模式识别(心理学) 图像分割 数学 算法 哲学 航空航天工程 工程类 几何学 语言学
作者
Ying Chen,Cheng Zheng,Taohui Zhou,Longfeng Feng,Lan Liu,Qiao Zeng,Guoqing Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:152: 106421-106421 被引量:26
标识
DOI:10.1016/j.compbiomed.2022.106421
摘要

Liver tumours are diseases with high morbidity and high deterioration probabilities, and accurate liver area segmentation from computed tomography (CT) scans is a prerequisite for quick tumour diagnosis. While 2D network segmentation methods can perform segmentation with lower device performance requirements, they often discard the rich 3D spatial information contained in CT scans, limiting their segmentation accuracy. Hence, a deep residual attention-based U-shaped network (DRAUNet) with a biplane joint method for liver segmentation is proposed in this paper, where the biplane joint method introduces coronal CT slices to assist the transverse slices with segmentation, incorporating more 3D spatial information into the segmentation results to improve the segmentation performance of the network. Additionally, a novel deep residual block (DR block) and dual-effect attention module (DAM) are introduced in DRAUNet, where the DR block has deeper layers and two shortcut paths. The DAM efficiently combines the correlations of feature channels and the spatial locations of feature maps. The DRAUNet with the biplane joint method is tested on three datasets, Liver Tumour Segmentation (LiTS), 3D Image Reconstruction for Comparison of Algorithms Database (3DIRCADb), and Segmentation of the Liver Competition 2007 (Sliver07), and it achieves 97.3%, 97.4%, and 96.9% Dice similarity coefficients (DSCs) for liver segmentation, respectively, outperforming most state-of-the-art networks; this strongly demonstrates the segmentation performance of DRAUNet and the ability of the biplane joint method to obtain 3D spatial information from 3D images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏感笑槐完成签到 ,获得积分10
刚刚
玻尿酸完成签到,获得积分10
刚刚
Shirley完成签到,获得积分10
1秒前
Dan_Galaxy完成签到,获得积分10
1秒前
可爱的坤完成签到,获得积分10
1秒前
何为会完成签到,获得积分10
1秒前
孟德尔吃豌豆完成签到,获得积分10
1秒前
2秒前
cquank完成签到,获得积分10
2秒前
Leorihy19完成签到,获得积分10
2秒前
单纯代萱发布了新的文献求助10
2秒前
lzzk完成签到,获得积分10
3秒前
大梦一场完成签到,获得积分10
3秒前
vivre223完成签到,获得积分10
3秒前
maningtian1发布了新的文献求助10
4秒前
大模型应助seven采纳,获得10
5秒前
5秒前
李宁发布了新的文献求助10
6秒前
李健的小迷弟应助Lee采纳,获得30
6秒前
zzz完成签到,获得积分10
6秒前
ppat5012完成签到 ,获得积分10
6秒前
受伤书文完成签到 ,获得积分10
6秒前
啊嘞嘞完成签到,获得积分10
7秒前
faye完成签到,获得积分10
7秒前
小树叶完成签到,获得积分10
8秒前
丸子完成签到 ,获得积分10
8秒前
乐乐应助Kevin采纳,获得10
9秒前
9秒前
9秒前
纳斯达克完成签到,获得积分10
10秒前
高天雨完成签到 ,获得积分10
11秒前
huiseXT完成签到,获得积分10
11秒前
等风的人完成签到,获得积分10
11秒前
EMMA发布了新的文献求助10
11秒前
传奇3应助漂亮的老四采纳,获得10
12秒前
职业赌徒完成签到,获得积分10
12秒前
夏侯夏侯完成签到 ,获得积分10
12秒前
车秋寒完成签到,获得积分10
12秒前
怎么会这样呢完成签到,获得积分20
12秒前
问兮浮生情完成签到 ,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957243
求助须知:如何正确求助?哪些是违规求助? 3503275
关于积分的说明 11112387
捐赠科研通 3234383
什么是DOI,文献DOI怎么找? 1787895
邀请新用户注册赠送积分活动 870830
科研通“疑难数据库(出版商)”最低求助积分说明 802330