A deep residual attention-based U-Net with a biplane joint method for liver segmentation from CT scans

分割 计算机科学 人工智能 双翼飞机 块(置换群论) 残余物 尺度空间分割 计算机视觉 特征(语言学) 模式识别(心理学) 图像分割 数学 算法 哲学 航空航天工程 工程类 几何学 语言学
作者
Ying Chen,Cheng Zheng,Taohui Zhou,Longfeng Feng,Lan Liu,Qiao Zeng,Guoqing Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106421-106421 被引量:17
标识
DOI:10.1016/j.compbiomed.2022.106421
摘要

Liver tumours are diseases with high morbidity and high deterioration probabilities, and accurate liver area segmentation from computed tomography (CT) scans is a prerequisite for quick tumour diagnosis. While 2D network segmentation methods can perform segmentation with lower device performance requirements, they often discard the rich 3D spatial information contained in CT scans, limiting their segmentation accuracy. Hence, a deep residual attention-based U-shaped network (DRAUNet) with a biplane joint method for liver segmentation is proposed in this paper, where the biplane joint method introduces coronal CT slices to assist the transverse slices with segmentation, incorporating more 3D spatial information into the segmentation results to improve the segmentation performance of the network. Additionally, a novel deep residual block (DR block) and dual-effect attention module (DAM) are introduced in DRAUNet, where the DR block has deeper layers and two shortcut paths. The DAM efficiently combines the correlations of feature channels and the spatial locations of feature maps. The DRAUNet with the biplane joint method is tested on three datasets, Liver Tumour Segmentation (LiTS), 3D Image Reconstruction for Comparison of Algorithms Database (3DIRCADb), and Segmentation of the Liver Competition 2007 (Sliver07), and it achieves 97.3%, 97.4%, and 96.9% Dice similarity coefficients (DSCs) for liver segmentation, respectively, outperforming most state-of-the-art networks; this strongly demonstrates the segmentation performance of DRAUNet and the ability of the biplane joint method to obtain 3D spatial information from 3D images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如你所liao完成签到,获得积分10
刚刚
CipherSage应助科研辣鸡辣辣采纳,获得10
刚刚
逢考必过完成签到 ,获得积分10
3秒前
4秒前
4秒前
研友_xnEOX8发布了新的文献求助50
4秒前
5秒前
天涯眷客完成签到,获得积分10
6秒前
7秒前
科研dog完成签到,获得积分10
8秒前
8秒前
昆1231231231发布了新的文献求助10
10秒前
11秒前
1235656646完成签到,获得积分10
11秒前
11秒前
11秒前
可爱的函函应助bingbing采纳,获得10
11秒前
打打应助zzd12318采纳,获得10
13秒前
田様应助sdkabdrxt采纳,获得10
15秒前
慕青应助我想查文献采纳,获得10
15秒前
YoYoojaejae完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
英姑应助yuan采纳,获得10
18秒前
星辰大海应助人木采纳,获得10
18秒前
松鼠完成签到,获得积分10
19秒前
罗小小完成签到,获得积分10
19秒前
shallgun发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
21秒前
xiaohu发布了新的文献求助10
23秒前
23秒前
Mint发布了新的文献求助10
25秒前
CipherSage应助专一的书雪采纳,获得10
26秒前
葡萄糖发布了新的文献求助10
26秒前
wwww0wwww应助研友_xnEOX8采纳,获得100
28秒前
SciGPT应助西瓜味小黄人采纳,获得10
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149289
求助须知:如何正确求助?哪些是违规求助? 2800391
关于积分的说明 7839862
捐赠科研通 2457980
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706