Sampling environmental DNA from trees and soil to detect cryptic arboreal mammals

树上运动 环境DNA 生物 生物多样性 生态学 濒危物种 采样(信号处理) 分类单元 哺乳动物 濒危物种 栖息地 滤波器(信号处理) 计算机科学 计算机视觉
作者
Michael C. Allen,Robert Kwait,Anthony R. Vastano,Alex Kisurin,Isabelle Zoccolo,Benjamin D. Jaffe,Jordan C. Angle,Brooke Maslo,Julie L. Lockwood
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:11
标识
DOI:10.1038/s41598-023-27512-8
摘要

Environmental DNA (eDNA) approaches to monitoring biodiversity in terrestrial environments have largely focused on sampling water bodies, potentially limiting the geographic and taxonomic scope of eDNA investigations. We assessed the performance of two strictly terrestrial eDNA sampling approaches to detect arboreal mammals, a guild with many threatened and poorly studied taxa worldwide, within two central New Jersey (USA) woodlands. We evaluated species detected with metabarcoding using two eDNA collection methods (tree bark vs. soil sampling), and compared the performance of two detection methods (qPCR vs. metabarcoding) within a single species. Our survey, which included 94 sampling events at 21 trees, detected 16 species of mammals, representing over 60% of the diversity expected in the area. More DNA was found for the 8 arboreal versus 8 non-arboreal species detected (mean: 2466 vs. 289 reads/sample). Soil samples revealed a generally similar composition, but a lower diversity, of mammal species. Detection rates for big brown bat were 3.4 × higher for qPCR over metabarcoding, illustrating the enhanced sensitivity of single-species approaches. Our results suggest that sampling eDNA from on and around trees could serve as a useful new monitoring tool for cryptic arboreal mammal communities globally.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助lokiyyy采纳,获得10
刚刚
传奇3应助twotwomi采纳,获得10
刚刚
boging完成签到 ,获得积分10
1秒前
mumumu发布了新的文献求助30
2秒前
1234567完成签到,获得积分20
2秒前
lic关闭了lic文献求助
2秒前
2秒前
SciGPT应助生动从丹采纳,获得10
3秒前
3秒前
何倩发布了新的文献求助10
4秒前
5秒前
对掏大王发布了新的文献求助10
6秒前
bearbiscuit完成签到,获得积分10
6秒前
6秒前
Bgeelyu完成签到,获得积分10
7秒前
Qingyong21应助cara采纳,获得40
7秒前
酒剑仙完成签到,获得积分10
9秒前
9秒前
布林发布了新的文献求助30
9秒前
缓慢的以山关注了科研通微信公众号
11秒前
然大宝发布了新的文献求助10
12秒前
15秒前
王来敏完成签到,获得积分10
15秒前
17秒前
19秒前
赵顺勇完成签到,获得积分10
19秒前
20秒前
20秒前
华仔应助科研通管家采纳,获得10
22秒前
tiptip应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得30
22秒前
李爱国应助张莜莜采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
23秒前
OU应助科研通管家采纳,获得10
23秒前
来日昭昭应助科研通管家采纳,获得10
23秒前
蓝天应助科研通管家采纳,获得10
23秒前
wei完成签到,获得积分10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700