Robust Radiomics Models for Predicting HIFU Prognosis in Uterine Fibroids Using SHAP Explanations: A Multicenter Cohort Study

无线电技术 多中心研究 子宫肌瘤 医学 队列 妇科 放射科 医学物理学 内科学 随机对照试验
作者
Huan Liu,Jincheng Zeng,Jinyun Chen,Xiaohua Liu,Yongbin Deng,Chenghai Li,Faqi Li
标识
DOI:10.1007/s10278-024-01318-0
摘要

This study sought to develop and validate different machine learning (ML) models that leverage non-contrast MRI radiomics to predict the degree of nonperfusion volume ratio (NVPR) of high-intensity focused ultrasound (HIFU) treatment for uterine fibroids, equipping clinicians with an early prediction tool for decision-making. This study conducted a retrospective analysis on 221 patients with uterine fibroids who received HIFU treatment and were divided into a training set (N = 117), internal validation (N = 49), and an external test set (N = 55). The 851 radiomics features were extracted from T2-weighted imaging (T2WI), and the max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. Several ML models were constructed by logistic regression (LR), decision tree (DT), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and light gradient boosting machine (LGBM). These models underwent internal and external validation, and the best model's feature significance was assessed via the Shapley additive explanations (SHAP) method. Four significant non-contrast MRI radiomics features were identified, with the SVM model outperforming others in both internal and external validations, and the AUCs of the T2WI models were 0.860, 0.847, and 0.777, respectively. SHAP analysis highlighted five critical predictors of postoperative NVPR degree, encompassing two radiomics features from non-contrast MRI and three clinical data indicators. The SVM model combining radiomics features and clinical parameters effectively predicts NVPR degree post-HIFU, which enables timely and effective interventions of HIFU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanzheng发布了新的文献求助10
刚刚
一二发布了新的文献求助10
刚刚
tubonly完成签到,获得积分10
1秒前
充电宝应助我爱学习采纳,获得10
1秒前
顺心飞绿完成签到,获得积分10
3秒前
3秒前
3秒前
鸭梨发布了新的文献求助10
4秒前
小二郎应助ss采纳,获得10
4秒前
承乐发布了新的文献求助10
4秒前
开心的孤云完成签到,获得积分10
4秒前
4秒前
考拉完成签到,获得积分10
5秒前
maffei完成签到,获得积分10
5秒前
无极微光应助十米采纳,获得20
5秒前
小鹿完成签到,获得积分10
6秒前
6秒前
纳斯达克完成签到,获得积分10
7秒前
7秒前
8秒前
淡淡de橙子完成签到,获得积分10
8秒前
贝塔贝塔发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助调皮的滑板采纳,获得10
9秒前
bubu发布了新的文献求助10
9秒前
xixi发布了新的文献求助10
9秒前
10秒前
10秒前
xiaofeizhu发布了新的文献求助10
10秒前
深情安青应助刘丰铭采纳,获得10
10秒前
无极微光应助雷Lei采纳,获得20
11秒前
11秒前
11秒前
Eon发布了新的文献求助10
11秒前
13秒前
十把刀刀完成签到,获得积分10
13秒前
14秒前
隐形曼青应助美好的冷亦采纳,获得10
14秒前
xiasha完成签到 ,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809