Robust Radiomics Models for Predicting HIFU Prognosis in Uterine Fibroids Using SHAP Explanations: A Multicenter Cohort Study

无线电技术 多中心研究 子宫肌瘤 医学 队列 妇科 放射科 医学物理学 内科学 随机对照试验
作者
Huan Liu,Jincheng Zeng,Jinyun Chen,Xiaohua Liu,Yongbin Deng,Chenghai Li,Faqi Li
标识
DOI:10.1007/s10278-024-01318-0
摘要

This study sought to develop and validate different machine learning (ML) models that leverage non-contrast MRI radiomics to predict the degree of nonperfusion volume ratio (NVPR) of high-intensity focused ultrasound (HIFU) treatment for uterine fibroids, equipping clinicians with an early prediction tool for decision-making. This study conducted a retrospective analysis on 221 patients with uterine fibroids who received HIFU treatment and were divided into a training set (N = 117), internal validation (N = 49), and an external test set (N = 55). The 851 radiomics features were extracted from T2-weighted imaging (T2WI), and the max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. Several ML models were constructed by logistic regression (LR), decision tree (DT), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and light gradient boosting machine (LGBM). These models underwent internal and external validation, and the best model's feature significance was assessed via the Shapley additive explanations (SHAP) method. Four significant non-contrast MRI radiomics features were identified, with the SVM model outperforming others in both internal and external validations, and the AUCs of the T2WI models were 0.860, 0.847, and 0.777, respectively. SHAP analysis highlighted five critical predictors of postoperative NVPR degree, encompassing two radiomics features from non-contrast MRI and three clinical data indicators. The SVM model combining radiomics features and clinical parameters effectively predicts NVPR degree post-HIFU, which enables timely and effective interventions of HIFU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
夜雨翻空完成签到,获得积分20
1秒前
Sally发布了新的文献求助10
2秒前
pengpeng发布了新的文献求助10
2秒前
Windycityguy发布了新的文献求助10
2秒前
若兰发布了新的文献求助10
2秒前
尊敬寒松完成签到 ,获得积分10
3秒前
4秒前
4秒前
叶落完成签到 ,获得积分10
6秒前
白日梦想家完成签到,获得积分10
6秒前
周周发布了新的文献求助10
6秒前
ying完成签到,获得积分20
7秒前
混子发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
无花果应助Sally采纳,获得10
8秒前
华仔应助jijibao采纳,获得10
8秒前
Dawn发布了新的文献求助10
9秒前
zz发布了新的文献求助10
9秒前
璐璐发布了新的文献求助10
10秒前
Windycityguy完成签到,获得积分10
11秒前
科目三应助若兰采纳,获得10
12秒前
zx完成签到,获得积分10
13秒前
西门吹雪完成签到,获得积分10
13秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
Owen应助健康的鑫鹏采纳,获得10
16秒前
8R60d8应助lin采纳,获得10
16秒前
16秒前
liming关注了科研通微信公众号
16秒前
Sally完成签到,获得积分20
18秒前
科研通AI5应助混子采纳,获得10
19秒前
wewewew发布了新的文献求助10
19秒前
若兰完成签到,获得积分10
20秒前
20秒前
20秒前
学术大咖完成签到 ,获得积分10
20秒前
米六完成签到 ,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664299
求助须知:如何正确求助?哪些是违规求助? 3224405
关于积分的说明 9757262
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012