Robust Radiomics Models for Predicting HIFU Prognosis in Uterine Fibroids Using SHAP Explanations: A Multicenter Cohort Study

无线电技术 多中心研究 子宫肌瘤 医学 队列 妇科 放射科 医学物理学 内科学 随机对照试验
作者
Huan Liu,Jincheng Zeng,Jinyun Chen,Lei Zhu,Yongbin Deng,Chenghai Li,Faqi Li
标识
DOI:10.1007/s10278-024-01318-0
摘要

This study sought to develop and validate different machine learning (ML) models that leverage non-contrast MRI radiomics to predict the degree of nonperfusion volume ratio (NVPR) of high-intensity focused ultrasound (HIFU) treatment for uterine fibroids, equipping clinicians with an early prediction tool for decision-making. This study conducted a retrospective analysis on 221 patients with uterine fibroids who received HIFU treatment and were divided into a training set (N = 117), internal validation (N = 49), and an external test set (N = 55). The 851 radiomics features were extracted from T2-weighted imaging (T2WI), and the max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) regression were applied for feature selection. Several ML models were constructed by logistic regression (LR), decision tree (DT), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and light gradient boosting machine (LGBM). These models underwent internal and external validation, and the best model's feature significance was assessed via the Shapley additive explanations (SHAP) method. Four significant non-contrast MRI radiomics features were identified, with the SVM model outperforming others in both internal and external validations, and the AUCs of the T2WI models were 0.860, 0.847, and 0.777, respectively. SHAP analysis highlighted five critical predictors of postoperative NVPR degree, encompassing two radiomics features from non-contrast MRI and three clinical data indicators. The SVM model combining radiomics features and clinical parameters effectively predicts NVPR degree post-HIFU, which enables timely and effective interventions of HIFU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
瘪良科研完成签到,获得积分10
2秒前
4秒前
lilila666完成签到 ,获得积分10
4秒前
拨云见日完成签到,获得积分10
5秒前
6秒前
6秒前
阿熊发布了新的文献求助10
7秒前
7秒前
9秒前
菠菜发布了新的文献求助100
10秒前
华仔应助后知后觉采纳,获得10
10秒前
感性的大楚完成签到,获得积分10
11秒前
mixcom完成签到,获得积分10
12秒前
奋斗蝴蝶发布了新的文献求助10
12秒前
SUS完成签到,获得积分10
13秒前
13秒前
简让完成签到 ,获得积分10
15秒前
bluesea完成签到 ,获得积分10
17秒前
葛藟萦藤发布了新的文献求助10
18秒前
lyy完成签到,获得积分10
18秒前
Ava应助莫西莫西采纳,获得10
18秒前
19秒前
20秒前
上官若男应助herogyus采纳,获得10
20秒前
22秒前
YYJ发布了新的文献求助10
23秒前
24秒前
后知后觉发布了新的文献求助10
25秒前
28秒前
充电宝应助璇22采纳,获得10
29秒前
29秒前
roclie完成签到,获得积分10
30秒前
SUS发布了新的文献求助10
30秒前
莫西莫西发布了新的文献求助10
32秒前
33秒前
葛藟萦藤完成签到,获得积分20
33秒前
雨夜发布了新的文献求助50
34秒前
34秒前
Loooong应助捱小秋采纳,获得10
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155850
求助须知:如何正确求助?哪些是违规求助? 2807060
关于积分的说明 7871807
捐赠科研通 2465463
什么是DOI,文献DOI怎么找? 1312240
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905