Assessing polyomic risk to predict Alzheimer's disease using a machine learning model

疾病 人工智能 心理学 机器学习 计算机科学 医学 内科学
作者
Tiffany Ngai,Julian Daniel Sunday Willett,Mohammad Waqas,Lucas H. Fishbein,Younjung Choi,Georg Hahn,Kristina Mullin,Christoph Lange,Julian Hecker,Rudolph E. Tanzi,Dmitry Prokopenko
出处
期刊:Alzheimers & Dementia [Wiley]
标识
DOI:10.1002/alz.14319
摘要

Abstract INTRODUCTION Alzheimer's disease (AD) is the most common form of dementia in the elderly. Given that AD neuropathology begins decades before symptoms, there is a dire need for effective screening tools for early detection of AD to facilitate early intervention. METHODS Here, we used tree‐based and deep learning methods to train polyomic prediction models for AD affection status and age at onset, employing genomic, proteomic, metabolomic, and drug use data from UK Biobank. We used SHAP to determine the feature's importance. RESULTS Our best‐performing polyomic model achieved an area under the receiver operating characteristics curve (AUROC) of 0.87. We identified GFAP and CXCL17 proteins to be the strongest predictors of AD, besides apolipoprotein E ( APOE) alleles. Increasing the number of cases by including “AD‐by‐proxy” cases did not improve AD prediction. DISCUSSION Among the four modalities, genomics, and proteomics were the most informative modality based on AUROC (area under the receiver operating characteristic curve). Our data suggest that two blood‐based biomarkers (glial fibrillary acidic protein [GFAP] and CXCL17) may be effective for early presymptomatic prediction of AD. Highlights We developed a polyomic model to predict AD and age‐at‐onset using omics and medication use data from EHR. We identified GFAP and CXCL17 proteins to be the strongest predictors of AD, besides APOE alleles. “AD‐by‐proxy” cases, if used in training, do not improve AD prediction. Proteomics was the most informative modality overall for affection status and AAO prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助畅快访蕊采纳,获得10
2秒前
KCC完成签到,获得积分10
3秒前
4秒前
结实金毛完成签到,获得积分10
4秒前
小马甲应助mmol采纳,获得10
6秒前
ewk发布了新的文献求助10
6秒前
6秒前
6秒前
冬猫完成签到,获得积分10
8秒前
9秒前
yyyy完成签到,获得积分20
9秒前
10秒前
winky发布了新的文献求助10
10秒前
meilongyong完成签到,获得积分10
10秒前
10秒前
共享精神应助太叔夜南采纳,获得10
11秒前
冷静幻枫完成签到 ,获得积分10
11秒前
自然千山发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
Dungjyut发布了新的文献求助10
13秒前
15秒前
17秒前
kilion发布了新的文献求助30
18秒前
19秒前
19秒前
huhu发布了新的文献求助10
19秒前
19秒前
kento应助畅快访蕊采纳,获得100
20秒前
22秒前
欢喜丹雪完成签到,获得积分10
22秒前
太叔夜南发布了新的文献求助10
23秒前
25秒前
留白完成签到 ,获得积分10
26秒前
lanmin完成签到,获得积分10
26秒前
26秒前
bkagyin应助野火不吃折耳根采纳,获得10
28秒前
29秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542