已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Based SERS Chemical Space for Two-Way Prediction of Structures and Spectra of Untrained Molecules

化学 化学空间 分子 空格(标点符号) 谱线 计算化学 有机化学 生物化学 量子力学 物理 语言学 哲学 药物发现
作者
Jaslyn Ru Ting Chen,Emily Xi Tan,Jingxiang Tang,Shi Xuan Leong,Sean Kai Xun Hue,Chi Seng Pun,In Yee Phang,Xing Yi Ling
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c15804
摘要

Identifying unknown molecules beyond existing databases remains challenging in surface-enhanced Raman scattering (SERS) spectroscopy. Conventional SERS analysis relies on matching experimental and cataloged spectra, limiting identification to known molecules in databases. With a vast chemical space of >1060 molecules, it is impractical to obtain the spectra of every molecule and rely solely on in silico techniques for spectral predictions. Here, we showcase an ML-based SERS chemical space that leverages key spectra-structure correlations to achieve two-way spectra-to-structure and structure-to-spectra predictions for untrained molecules with a >90% average accuracy. Using a SERS chemical space comprising 38 linear molecules from four classes (alcohols, aldehydes, amines, and carboxylic acids), our experimental and in silico studies reveal underlying spectral features that enable the prediction of untrained molecules represented by two molecular descriptors (functional group and carbon chain length). For forward spectra-to-structure predictions, we devise a two-step "classification and regression" ML framework to sequentially predict the functional group and carbon chain length of untrained molecules with 100% accuracy and ≤1 carbon difference, respectively. In addition, using an eXtreme Gradient Boosting (XGBoost) regressor trained on the two molecular descriptors, we attain inverse structure-to-spectra prediction with a high average cosine similarity of 90.4% between the predicted and experimental spectra. Our ML-based SERS chemical space represents a shift in molecular identification from traditional spectral matching to predictive modeling of spectra-structure relationships. These insights could motivate the expansion of SERS chemical spaces and realize demands for present and future SERS technologiesfor accurate unknown identification across diverse fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子发布了新的文献求助30
1秒前
愤怒的无敌完成签到,获得积分20
1秒前
在线积累学问完成签到,获得积分10
3秒前
xuzj完成签到,获得积分10
3秒前
3秒前
戈惜完成签到 ,获得积分10
4秒前
xyl完成签到,获得积分10
8秒前
不打烊吗发布了新的文献求助10
9秒前
keji完成签到,获得积分10
12秒前
科研通AI5应助直率香寒采纳,获得10
12秒前
13秒前
狮子完成签到 ,获得积分10
13秒前
积极乐安发布了新的文献求助10
21秒前
21秒前
21秒前
充电宝应助狂野傲南采纳,获得10
22秒前
25秒前
完美世界应助Skywalker采纳,获得10
26秒前
ZZY发布了新的文献求助10
27秒前
十三完成签到 ,获得积分10
28秒前
神勇映安完成签到 ,获得积分10
28秒前
听话发布了新的文献求助10
28秒前
让我康康发布了新的文献求助10
29秒前
31秒前
思源应助柚子采纳,获得30
31秒前
33秒前
DiJia完成签到 ,获得积分10
34秒前
34秒前
睡个好觉发布了新的文献求助10
35秒前
罐装发布了新的文献求助10
37秒前
37秒前
37秒前
不许内耗完成签到,获得积分10
38秒前
38秒前
38秒前
大个应助科研小白采纳,获得10
39秒前
狂野傲南发布了新的文献求助10
39秒前
40秒前
Skywalker发布了新的文献求助10
40秒前
洁净方盒发布了新的文献求助10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733271
求助须知:如何正确求助?哪些是违规求助? 3277434
关于积分的说明 10002612
捐赠科研通 2993338
什么是DOI,文献DOI怎么找? 1642645
邀请新用户注册赠送积分活动 780555
科研通“疑难数据库(出版商)”最低求助积分说明 748892