Machine Learning-Based SERS Chemical Space for Two-Way Prediction of Structures and Spectra of Untrained Molecules

化学 化学空间 分子 空格(标点符号) 谱线 计算化学 有机化学 生物化学 量子力学 物理 语言学 哲学 药物发现
作者
Jaslyn Ru Ting Chen,Emily Xi Tan,Jingxiang Tang,Shi Xuan Leong,Sean Kai Xun Hue,Chi Seng Pun,In Yee Phang,Xing Yi Ling
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
被引量:1
标识
DOI:10.1021/jacs.4c15804
摘要

Identifying unknown molecules beyond existing databases remains challenging in surface-enhanced Raman scattering (SERS) spectroscopy. Conventional SERS analysis relies on matching experimental and cataloged spectra, limiting identification to known molecules in databases. With a vast chemical space of >1060 molecules, it is impractical to obtain the spectra of every molecule and rely solely on in silico techniques for spectral predictions. Here, we showcase an ML-based SERS chemical space that leverages key spectra-structure correlations to achieve two-way spectra-to-structure and structure-to-spectra predictions for untrained molecules with a >90% average accuracy. Using a SERS chemical space comprising 38 linear molecules from four classes (alcohols, aldehydes, amines, and carboxylic acids), our experimental and in silico studies reveal underlying spectral features that enable the prediction of untrained molecules represented by two molecular descriptors (functional group and carbon chain length). For forward spectra-to-structure predictions, we devise a two-step "classification and regression" ML framework to sequentially predict the functional group and carbon chain length of untrained molecules with 100% accuracy and ≤1 carbon difference, respectively. In addition, using an eXtreme Gradient Boosting (XGBoost) regressor trained on the two molecular descriptors, we attain inverse structure-to-spectra prediction with a high average cosine similarity of 90.4% between the predicted and experimental spectra. Our ML-based SERS chemical space represents a shift in molecular identification from traditional spectral matching to predictive modeling of spectra-structure relationships. These insights could motivate the expansion of SERS chemical spaces and realize demands for present and future SERS technologiesfor accurate unknown identification across diverse fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adgeuidek完成签到,获得积分10
1秒前
1秒前
Sigramm应助是个哑巴采纳,获得10
1秒前
1秒前
2秒前
科研小白发布了新的文献求助10
2秒前
2秒前
2秒前
蹇蹇完成签到 ,获得积分10
2秒前
2秒前
NexusExplorer应助zizi采纳,获得10
3秒前
4秒前
4秒前
111完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
酷波er应助poker采纳,获得10
5秒前
ssy发布了新的文献求助10
5秒前
内向世开完成签到,获得积分10
5秒前
HZW发布了新的文献求助10
6秒前
Number完成签到,获得积分10
6秒前
6秒前
meng完成签到,获得积分10
6秒前
孙超发布了新的文献求助20
6秒前
7秒前
MM11111完成签到,获得积分10
7秒前
NexusExplorer应助大胆凡阳采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
大气沛容完成签到,获得积分10
7秒前
大模型应助psycho采纳,获得10
8秒前
脑洞疼应助CTCTCT6采纳,获得10
8秒前
lfzw完成签到,获得积分10
8秒前
8秒前
万能图书馆应助韩飞采纳,获得10
8秒前
orixero应助杨敬业采纳,获得10
9秒前
英俊的铭应助羊羊羊采纳,获得30
9秒前
田様应助Number采纳,获得30
9秒前
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482