Sliceable, Moldable, and Highly Conductive Electrolytes for All-Solid-State Batteries

电解质 材料科学 离子电导率 锂(药物) 快离子导体 电导率 离子 离子键合 分子动力学 化学工程 物理化学 化学 计算化学 有机化学 电极 医学 工程类 内分泌学
作者
Tej P. Poudel,Erica Truong,Ifeoluwa Peter Oyekunle,Michael J. Deck,Bright Ogbolu,Yudan Chen,Pawan K. Ojha,Thilina N. D. D. Gamaralalage,Sawankumar V. Patel,Yongkang Jin,Dewen Hou,Chen Huang,Tianyi Li,Yuzi Liu,Hui Xiong,Yan‐Yan Hu
出处
期刊:ACS energy letters [American Chemical Society]
卷期号:: 40-47
标识
DOI:10.1021/acsenergylett.4c02788
摘要

All-solid-state batteries (ASSBs) require solid electrolytes with high ionic conductivity, stability, and deformability for optimal energy and power density. We developed lithium-deficient lithium yttrium bromide (LYB) solid electrolytes, Li3–xYBr6–x (0 ≤ x ≤ 0.50), using a comelting method with controlled lithium deficiency. These electrolytes exhibit favorable mechanical properties such as high moldability and sliceability. The Li2.65YBr5.65 composition has an ionic conductivity of 4.49 mS cm–1 at 25 °C and an activation energy of 0.28 eV. Compared to Li3YBr6, Li2.65YBr5.65 demonstrates improved rate performance and cycling stability in ASSBs. High-resolution X-ray diffraction confirms the formation of the LYB phase with a C2/m space group. Structural analysis reveals increased cation disorder and larger polyhedral volumes for x > 0 in Li3–xYBr6–x , contributing to reduced Li+ migration energy barriers. Bond valence site energy calculations and molecular dynamics simulations reveal enhanced 3D lithium-ion transport. NMR spectroscopy further highlights increased Li+ dynamics and impurity elimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gg完成签到,获得积分10
刚刚
瞬间完成签到 ,获得积分10
刚刚
Hello paper完成签到,获得积分10
1秒前
1秒前
demonox完成签到,获得积分10
1秒前
乐乐应助奔奔采纳,获得10
2秒前
4秒前
4秒前
科研通AI5应助SCI采纳,获得10
4秒前
科研通AI5应助hobowei采纳,获得10
7秒前
可爱奇异果完成签到 ,获得积分10
7秒前
wang发布了新的文献求助10
8秒前
太空人完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
10秒前
该睡觉啦完成签到,获得积分20
10秒前
10秒前
莫x莫完成签到 ,获得积分10
12秒前
loewy完成签到,获得积分10
12秒前
黄婷发布了新的文献求助10
12秒前
12秒前
yuan完成签到,获得积分10
12秒前
zho发布了新的文献求助10
12秒前
12秒前
苏苏完成签到,获得积分10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得80
13秒前
Hello应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
万能图书馆应助内向秋寒采纳,获得10
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
zzzq应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794