电解质
材料科学
离子电导率
锂(药物)
快离子导体
电导率
离子
离子键合
分子动力学
化学工程
物理化学
化学
计算化学
有机化学
电极
医学
工程类
内分泌学
作者
Tej P. Poudel,Erica Truong,Ifeoluwa Peter Oyekunle,Michael J. Deck,Bright Ogbolu,Yudan Chen,Pawan K. Ojha,Thilina N. D. D. Gamaralalage,Sawankumar V. Patel,Yongkang Jin,Dewen Hou,Chen Huang,Tianyi Li,Yuzi Liu,Hui Xiong,Yan‐Yan Hu
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2024-12-09
卷期号:: 40-47
标识
DOI:10.1021/acsenergylett.4c02788
摘要
All-solid-state batteries (ASSBs) require solid electrolytes with high ionic conductivity, stability, and deformability for optimal energy and power density. We developed lithium-deficient lithium yttrium bromide (LYB) solid electrolytes, Li3–xYBr6–x (0 ≤ x ≤ 0.50), using a comelting method with controlled lithium deficiency. These electrolytes exhibit favorable mechanical properties such as high moldability and sliceability. The Li2.65YBr5.65 composition has an ionic conductivity of 4.49 mS cm–1 at 25 °C and an activation energy of 0.28 eV. Compared to Li3YBr6, Li2.65YBr5.65 demonstrates improved rate performance and cycling stability in ASSBs. High-resolution X-ray diffraction confirms the formation of the LYB phase with a C2/m space group. Structural analysis reveals increased cation disorder and larger polyhedral volumes for x > 0 in Li3–xYBr6–x , contributing to reduced Li+ migration energy barriers. Bond valence site energy calculations and molecular dynamics simulations reveal enhanced 3D lithium-ion transport. NMR spectroscopy further highlights increased Li+ dynamics and impurity elimination.
科研通智能强力驱动
Strongly Powered by AbleSci AI